• Find code on Google Scholar, Semantic Scholar, Microsoft Academic, ArXiv using our Browser Extension!

    Add to Chrome
top logo
  • 0 itemsFree
  • Categories
    • Agricultural and Biological Sciences
      • Agricultural Sciences
    • Arts and Humanities
    • Biochemistry
    • Business and Management
    • Chemistry
      • Analytical Chemistry
    • Computer Science
      • Artificial Intelligence
    • Decision Sciences
    • Earth and Environmental Sciences
    • Economics and Econometrics
      • Econometrics
      • Experimental Economics
      • Finance
    • Energy
    • Engineering
      • Aerospace Engineering
      • Electrical and Computer Engineering
    • Health Professions
    • Immunology and Microbiology
    • Materials Science
    • Mathematics
      • Mathematical Sciences
    • Medicine
    • Neuroscience
    • Nursing
    • Pharmacology
      • Toxicology and Pharmaceutics
    • Physics and Astronomy
      • Physics
    • Psychology
    • Social Sciences
    • Veterinary
  • Researchers
  • About us
  • Register
  • Login
  • FAQ
Science NestCategories

Filter:
Price Price
Title Title
Date Date
  • Whole MILC: generalizing learned dynamics across tasks, datasets, and populations

    Sergey M. Plis, Zening Fu, Md Mahfuzur Rahman, Usman Mahmood, Alex Fedorov, Noah Lewis, Vince D. Calhoun , Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) ,  2020
    Jupyter Notebook

    Free

  • Who's Afraid of Adversarial Queries? The Impact of Image Modifications on Content-based Image Retrieval

    Zhuoran Liu, Zhengyu Zhao, Martha Larson , ICMR 2019 - Proceedings of the 2019 ACM International Conference on Multimedia Retrieval ,  2019
    Python

    Free

  • Who’s to Blame? Political Centralization and Electoral Punishment Under Authoritarianism

    Ora John Reuter, Quintin H. Beazer , THE JOURNAL OF POLITICS ,  2019
    R

    Free

  • Who wrote the rules for the Trans-Pacific Partnership?

    Todd L. Allee, Andrew Lugg , RESEARCH & POLITICS ,  2016
    R

    Free

  • Who Rules the World? A Portrait of the Global Leadership Class

    John Gerring, Erzen Oncel, Kevin Michael Morrison, Daniel Pemstein , PERSPECTIVES ON POLITICS ,  2019
    R

    Free

  • Who Revolts? Empirically Revisiting the Social Origins of Democracy

    Sirianne Dahlum, Carl Henrik Knutsen, Tore Wig , THE JOURNAL OF POLITICS ,  2019
    R

    Free

  • Who Matches? Propensity Scores and Bias in the Causal Effects of Education on Participation

    John A. Henderson, Sara Chatfield , THE JOURNAL OF POLITICS ,  2011
    R

    Free

  • Who Let The Dogs Out? Modeling Dog Behavior From Visual Data

    Hessam Bagherinezhad, Joseph Redmon, Kiana Ehsani, Roozbeh Mottaghi, Ali Farhadi , CVPR 2018 6 ,  2018
    Python

    Free

  • Who is Afraid of Big Bad Minima? Analysis of gradient-flow in spiked matrix-tensor models

    Stefano Sarao Mannelli, Giulio Biroli, Florent Krzakala, Lenka Zdeborová, Chiara Cammarota , NeurIPS 2019 12 ,  2019
    C++

    Free

  • Who is a Terrorist? Ethnicity, Group Affiliation, and Understandings of Political Violence

    Vito D'Orazio, Idean Salehyan , INTERNATIONAL INTERACTIONS ,  2018
    R

    Free

  • Who Gets the Credit? Legislative Responsiveness and Evaluations of Members, Parties, and the US Congress

    Daniel Mark Butler, Christopher F. Karpowitz, Jeremy C. Pope , POLITICAL SCIENCE RESEARCH AND METHODS ,  2017
    R

    Free

  • Who Blames Whom in a Crisis? Detecting Blame Ties from News Articles Using Neural Networks

    Shuailong Liang, Yue Zhang, Olivia Nicol , 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 ,  2019
    Python

    Free

  • Whitening-Free Least-Squares Non-Gaussian Component Analysis

    Hiroaki Shiino, Hiroaki Sasaki, Gang Niu, Masashi Sugiyama , Journal of Machine Learning Research ,  2016
    Matlab

    Free

  • Whitening and Coloring batch transform for GANs

    Nicu Sebe, Enver Sangineto, Aliaksandr Siarohin , ICLR 2019 5 ,  2018
    Python

    Free

  • White-to-Black: Efficient Distillation of Black-Box Adversarial Attacks

    Yoav Chai, Yotam Gil, Or Gorodissky, Jonathan Berant , NAACL 2019 6 ,  2019
    Python

    Free

  • Whispered-to-voiced Alaryngeal Speech Conversion with Generative Adversarial Networks

    Jose A. Gonzalez, Santiago Pascual, Antonio Bonafonte, Joan Serrà , IberSPEECH 2018 ,  2018
    Multiple

    Free

  • Which Training Methods for GANs do actually Converge?

    Lars Mescheder, Andreas Geiger, Sebastian Nowozin , ICML 2018 7 ,  2018
    Multiple

    Free

  • Which process metrics can significantly improve defect prediction models? An empirical study

    Lech Madeyski, Marian Jureczko , Software Quality Journal ,  2015
    R

    Free

  • Which is the Effective Way for Gaokao: Information Retrieval or Neural Networks?

    Shizhu He, Jun Zhao, Xiangrong Zeng, Kang Liu, Shangmin Guo , EACL 2017 4 ,  2017
    Java

    Free

  • Which Has Better Visual Quality: The Clear Blue Sky or a Blurry Animal?

    Weisi Lin, Ming Jiang, Tingting Jiang, Dingquan Li , IEEE Transactions on Multimedia 2018 10 ,  2018
    MATLAB

    Free

  • Which Algorithmic Choices Matter at Which Batch Sizes? Insights From a Noisy Quadratic Model

    Zachary Nado, Guodong Zhang, Lala Li, George E. Dahl, Roger Grosse, Christopher J. Shallue, James Martens, Sushant Sachdeva , NeurIPS 2019 12 ,  2019
    Jupyter Notebook

    Free

  • Where’s the Pivot? Obstruction and Lawmaking in the Pre-cloture Senate

    Gregory J. Wawro, Eric Schickler , AMERICAN JOURNAL OF POLITICAL SCIENCE ,  2004
    R

    Free

  • Where to put the Image in an Image Caption Generator

    Albert Gatt, Kenneth P. Camilleri, Marc Tanti , Natural Language Engineering ,  2017
    Multiple

    Free

  • Where to Explore Next? ExHistCNN for History-aware Autonomous 3D Exploration

    Alessio Del Bue, Yiming Wang , ECCV 2020 8 ,  2020
    Python

    Free

  • Where is Your Evidence: Improving Fact-checking by Justification Modeling

    Smar Muresan, a, Savvas Petridis, Tariq Alhindi , WS 2018 11 ,  2018
    Multiple

    Free

  • Where is positional uncertainty a problem for species distribution modelling

    Babak Naimi, N. A. S. Hamm, Thomas A. Groen, Andrew K. Skidmore, Albertus G. Toxopeus , Ecography ,  2014
    R

    Free

  • Where is my URI?

    Andre Valdestilhas, Markus Nentwig, Tommaso Soru, Edgard Marx, Axel-Cyrille Ngonga Ngomo, Muhammad Saleem , European Semantic Web Conference 2018 6 ,  2018
    Java

    Free

  • Where Is My Mirror?

    Ke Xu, Haiyang Mei, Xin Yang, Rynson W. H. Lau, Baocai Yin, Xiaopeng Wei , ICCV 2019 10 ,  2019
    Python

    Free

  • Where is Misty? Interpreting Spatial Descriptors by Modeling Regions in Space

    Dan Klein, Nikita Kitaev , EMNLP 2017 9 ,  2017
    JavaScript

    Free

  • Where Does the Driver Look? Top-Down Based Saliency Detection in a Traffic Driving Environment

    Tao Deng, Kaifu Yang, Yongjie Li, Hongmei Yan , IEEE Transactions on Intelligent Transportation Systems ,  2016
    Matlab

    Free

  • Where Does It Exist: Spatio-Temporal Video Grounding for Multi-Form Sentences

    Lianli Gao, Zhou Zhao, Yang Zhao, Zhu Zhang, Qi Wang, Huasheng Liu , CVPR 2020 6 ,  2020
    Unspecified

    Free

  • Where are we now? A large benchmark study of recent symbolic regression methods

    Patryk Orzechowski, Jason H. Moore, William La Cava , GECCO 2018 - Proceedings of the 2018 Genetic and Evolutionary Computation Conference ,  2018
    Jupyter Notebook

    Free

  • Where are the Masks: Instance Segmentation with Image-level Supervision

    Mark Schmidt, Issam H. Laradji, David Vazquez , 30th British Machine Vision Conference 2019, BMVC 2019 ,  2019
    Python

    Free

  • Where are the Blobs: Counting by Localization with Point Supervision

    Issam H. Laradji, Negar Rostamzadeh, Pedro O. Pinheiro, David Vázquez, Mark W. Schmidt , European Conference on Computer Vision ,  2018
    PyTorch

    Free

  • Where are the Blobs: Counting by Localization with Point Supervision

    Pedro O. Pinheiro, David Vazquez, Issam H. Laradji, Mark Schmidt, Negar Rostamzadeh , ECCV 2018 9 ,  2018
    Multiple

    Free

  • When2com: Multi-Agent Perception via Communication Graph Grouping

    Junjiao Tian, Nathaniel Glaser, Zsolt Kira, Yen-Cheng Liu , CVPR 2020 6 ,  2020
    Python

    Free

  • When, Where, and What? A New Dataset for Anomaly Detection in Driving Videos

    David Crandall, Yu Yao, Xizi Wang, Zelin Pu, Mingze Xu, Ella Atkins , arXiv preprint ,  2020
    Multiple

    Free

  • When Unsupervised Domain Adaptation Meets Tensor Representations

    Zhiguo Cao, Anton van den Hengel, Hao Lu, Wei Wei, Lei Zhang, Ke Xian, Chunhua Shen , ICCV 2017 10 ,  2017
    Matlab

    Free

  • When to Trust Your Model: Model-Based Policy Optimization

    Marvin Zhang, Sergey Levine, Justin Fu, Michael Janner , NeurIPS 2019 12 ,  2019
    Python

    Free

  • When to reply? Context Sensitive Models to Predict Instructor Interventions in MOOC Forums

    Min-Yen Kan, Muthu Kumar Chandrasekaran , arXiv preprint ,  2019
    Python

    Free

  • When Threat Mobilizes: Immigration Enforcement and Latino Voter Turnout

    Ariel R. White , POLITICAL BEHAVIOR ,  2016
    R

    Free

  • When size matters: advantages of weighted effect coding in observational studies.

    Manfred te Grotenhuis, Ben Pelzer, Rob Eisinga, Rense Nieuwenhuis, Alexander SchmidtCatran, Ruben Konig , INTERNATIONAL JOURNAL OF PUBLIC HEALTH ,  2017
    R

    Free

  • When Relation Networks meet GANs: Relation GANs with Triplet Loss

    Yizhou Yu, Yue Wang, Lijun Wang, Runmin Wu, Pingping Zhang, Huchuan Lu, Kunyao Zhang , arXiv preprint ,  2020
    Python

    Free

  • When NAS Meets Robustness: In Search of Robust Architectures against Adversarial Attacks

    Ziwei Liu, Rui Xu, Dahua Lin, Yuzhe Yang, Minghao Guo , CVPR 2020 6 ,  2019
    Python

    Free

  • When Image Denoising Meets High-Level Vision Tasks: A Deep Learning Approach

    Xianming Liu, Ding Liu, Bihan Wen, Thomas S. Huang, Zhangyang Wang , IJCAI International Joint Conference on Artificial Intelligence ,  2017
    Multiple

    Free

  • When Extremism Pays: Policy Positions, Voter Certainty, and Party Support in Postcommunist Europe

    EzrowLawrence, HomolaJonathan, TavitsMargit , THE JOURNAL OF POLITICS ,  2014
    R

    Free

  • When Explanations Lie: Why Many Modified BP Attributions Fail

    Tim Landgraf, Maximilian Granz, Leon Sixt , ICML 2020 1 ,  2019
    Jupyter Notebook

    Free

  • When experts disagree: Response aggregation and Its consequences in expert surveys

    Rene Lindstaedt, Sven-Oliver Proksch, Jonathan B. Slapin , POLITICAL SCIENCE RESEARCH AND METHODS ,  2018
    R

    Free

  • When Does Self-supervision Improve Few-shot Learning?

    Subhransu Maji, Bharath Hariharan, Jong-Chyi Su , ECCV 2020 8 ,  2019
    Python

    Free

  • When Does Self-Supervision Help Graph Convolutional Networks?

    Tianlong Chen, Yuning You, Yang Shen, Zhangyang Wang , ICML 2020 1 ,  2020
    Python

    Free

  • When Does Label Smoothing Help?

    Simon Kornblith, Rafael Müller, Geoffrey Hinton , NeurIPS 2019 12 ,  2019
    Python

    Free

  • When Do the Rich Win

    J. Alexander Branham, Stuart Soroka, Christopher Wlezien , POLITICAL SCIENCE QUARTERLY ,  2017
    R

    Free

  • When Do the Advantaged See the Disadvantages of Others? A Quasi-Experimental Study of National Service

    Cecilia Hyunjung Mo, Katharine M. Conn , AMERICAN POLITICAL SCIENCE REVIEW ,  2018
    R

    Free

  • When Do States Say Uncle? Network Dependence and Sanction Compliance

    Cassy L. Dorff, Shahryar Minhas , INTERNATIONAL INTERACTIONS ,  2017
    R

    Free

  • When Do Renters Behave Like Homeowners? High Rent, Price Anxiety, and NIMBYism

    Michael S. Hankinson , AMERICAN POLITICAL SCIENCE REVIEW ,  2018
    R

    Free

  • When Deep Learning Met Code Search

    Koushik Sen, Jose Cambronero, Seohyun Kim, Satish Chandra, Hongyu Li , ESEC/FSE 2019 - Proceedings of the 2019 27th ACM Joint Meeting European Software Engineering Conference and Symposium on the Foundations of Software Engineering ,  2019
    Jupyter Notebook

    Free

  • When Deep Learning Meets Digital Image Correlation

    K. Abdelouahab, B. Blaysat, M. Grediac, F. Berry, S. Boukhtache, F. Sur , Optics and Lasers in Engineering ,  2020
    Python

    Free

  • When Color Constancy Goes Wrong: Correcting Improperly White-Balanced Images

    Brian Price, Mahmoud Afifi, Michael S. Brown, Scott Cohen , CVPR 2019 6 ,  2019
    MATLAB

    Free

  • When Causal Intervention Meets Adversarial Examples and Image Masking for Deep Neural Networks

    Yi-Chang James Tsai, Chao-Han Huck Yang, Pin-Yu Chen, Yi-Chieh Liu, Xiaoli Ma , Proceedings - International Conference on Image Processing, ICIP ,  2019
    Jupyter Notebook

    Free

  • When can we trust population trends? A method for quantifying the effects of sampling interval and duration

    Hannah S. Wauchope, Tatsuya Amano, William J. Sutherland, Alison Johnston , Methods in Ecology and Evolution ,  2019
    R

    Free

  • When can we trust population trends? A method for quantifying the effects of sampling interval and duration

    Hannah S. Wauchope, Tatsuya Amano, William J. Sutherland, Alison Johnston , Methods in Ecology and Evolution ,  2019
    R

    Free

  • When and Why are Pre-trained Word Embeddings Useful for Neural Machine Translation?

    Graham Neubig, Ye Qi, Sarguna Janani Padmanabhan, Devendra Singh Sachan, Matthieu Felix , NAACL 2018 6 ,  2018
    Python

    Free

  • What's Cookin'? Interpreting Cooking Videos using Text, Speech and Vision

    Kevin Murphy, Jonathan Malmaud, Nick Johnston, Andrew Rabinovich, Jonathan Huang, Vivek Rathod , NAACL HLT 2015 - 2015 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies, Proceedings of the Conference ,  2015
    Unspecified

    Free

  • What’s Cookin’? Interpreting Cooking Videos using Text, Speech and Vision

    Kevin Murphy, Jonathan Malmaud, Andrew Rabinovich, Nicholas Johnston, Jonathan Huang, Vivek Rathod , HLT 2015 5 ,  2015
    Unspecified

    Free

  • What’s There in the Dark

    Saptakatha Adak, Sauradip Nag, Sukhendu Das , 26th IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan 2019 9 ,  2019
    Python

    Free

  • What’s Missing: A Knowledge Gap Guided Approach for Multi-hop Question Answering

    Ashish Sabharwal, Peter Clark, Tushar Khot , IJCNLP 2019 11 ,  2019
    Python

    Free

  • What’s in a Question: Using Visual Questions as a Form of Supervision

    Abhinav Gupta, Siddha Ganju, Olga Russakovsky , CVPR 2017 7 ,  2017
    Lua

    Free

  • What’s in a Domain? Learning Domain-Robust Text Representations using Adversarial Training

    Timothy Baldwin, Trevor Cohn, Yitong Li , NAACL 2018 6 ,  2018
    Python

    Free

  • What’s Hidden in a Randomly Weighted Neural Network?

    Mohammad Rastegari, Mitchell Wortsman, Vivek Ramanujan, Ali Farhadi, Aniruddha Kembhavi , CVPR 2020 6 ,  2019
    Python

    Free

  • What Your Username Says About You

    Mari Ostendorf, Aaron Jaech , EMNLP 2015 9 ,  2015
    Python

    Free

  • What You Say and How You Say it: Joint Modeling of Topics and Discourse in Microblog Conversations

    Jing Li, Cuiyun Gao, Michael R. Lyu, Irwin King, Jichuan Zeng, Yulan He , TACL 2019 3 ,  2019
    Python

    Free

  • What Would You Expect? Anticipating Egocentric Actions with Rolling-Unrolling LSTMs and Modality Attention

    Giovanni Maria Farinella, Antonino Furnari , ICCV 2019 10 ,  2019
    Multiple

    Free

  • What value do explicit high level concepts have in vision to language problems?

    Anthony Dick, Anton van den Hengel, Qi Wu, Lingqiao Liu, Chunhua Shen , CVPR 2016 6 ,  2015
    Multiple

    Free

  • What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?

    Alex Kendall, Yarin Gal , NeurIPS 2017 12 ,  2017
    Multiple

    Free

  • What to talk about and how? Selective Generation using LSTMs with Coarse-to-Fine Alignment

    Mohit Bansal, Matthew R. Walter, Hongyuan Mei , NAACL 2016 6 ,  2015
    Python

    Free

  • What to Expect of Classifiers? Reasoning about Logistic Regression with Missing Features

    YooJung Choi, Yitao Liang, Pasha Khosravi, Guy Van den Broeck , IJCAI International Joint Conference on Artificial Intelligence ,  2019
    Jupyter Notebook

    Free

  • What they do when in doubt: a study of inductive biases in seq2seq learners

    Rahma Chaabouni, Eugene Kharitonov , arXiv preprint ,  2020
    Python

    Free

  • What the Constant Velocity Model Can Teach Us About Pedestrian Motion Prediction

    Vincent Aravantinos, Christoph Schöller, Florian Lay, Alois Knoll , IEEE Robotics and Automation Letters ,  2019
    Multiple

    Free

  • What Should I Learn First: Introducing LectureBank for NLP Education and Prerequisite Chain Learning

    Robert R. Tung, Dragomir R. Radev, Alexander R. Fabbri, Irene Li , 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 ,  2018
    Python

    Free

  • What Should I Learn First: Introducing LectureBank for NLP Education and Prerequisite Chain Learning

    Robert R. Tung, Dragomir R. Radev, Alexander R. Fabbri, Irene Li , arXiv preprint ,  2018
    Python

    Free

  • What Object Should I Use? – Task Driven Object Detection

    Yaser Souri, Juergen Gall, Johann Sawatzky, Christian Grund , CVPR 2019 6 ,  2019
    Python

    Free

  • What Matters in Unsupervised Optical Flow

    Rico Jonschkowski, Kurt Konolige, Anelia Angelova, Jonathan T. Barron, Ariel Gordon, Austin Stone , ECCV 2020 8 ,  2020
    CODE NOT FOUND

    Free

  • What Makes Training Multi-Modal Classification Networks Hard?

    Weiyao Wang, Du Tran, Matt Feiszli , CVPR 2020 6 ,  2019
    Multiple

    Free

  • What Makes Good Synthetic Training Data for Learning Disparity and Optical Flow Estimation?

    Thomas Brox, Eddy Ilg, Daniel Cremers, Nikolaus Mayer, Philipp Fischer, Caner Hazirbas, Alexey Dosovitskiy , International Journal of Computer Vision ,  2018
    C++

    Free

  • What Makes Foreign Policy Teams Tick: Explaining Variation in Group Performance at Geopolitical Forecasting

    Michael Horowitz, Brandon M. Stewart, +6 authors Philip Tetlock , THE JOURNAL OF POLITICS ,  2019
    R

    Free

  • What makes for prize-winning television?

    Sara Connolly, Chris Hanretty, Shaun P. Hargreaves Heap, John Street , EUROPEAN JOURNAL OF COMMUNICATION ,  2015
    R

    Free

  • What Makes A Good Story? Designing Composite Rewards for Visual Storytelling

    Yu Cheng, Junjie Hu, Jianfeng Gao, Zhe Gan, Jingjing Liu, Graham Neubig , Proceedings of the AAAI Conference on Artificial Intelligence ,  2019
    Python

    Free

  • What Makes a Good Neighbor? Race, Place, and Norms of Political Participation

    Allison P. Anoll , AMERICAN POLITICAL SCIENCE REVIEW ,  2018
    R

    Free

  • What made you do this? Understanding black-box decisions with sufficient input subsets

    Jonas Mueller, Siddhartha Jain, Brandon Carter, David Gifford , AISTATS 2019 - 22nd International Conference on Artificial Intelligence and Statistics ,  2018
    HTML

    Free

  • What Looks Good with my Sofa: Multimodal Search Engine for Interior Design

    Łukasz Brocki, Ivona Tautkute, Tomasz Trzciński, Wojciech Stokowiec, Aleksandra Możejko, Krzysztof Marasek , Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, FedCSIS 2017 ,  2017
    Jupyter Notebook

    Free

  • What it Thinks is Important is Important: Robustness Transfers through Input Gradients

    Alvin Chan, Yew-Soon Ong, Yi Tay , CVPR 2020 6 ,  2019
    Python

    Free

  • What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis

    Junyeop Lee, Hwalsuk Lee, Seong Joon Oh, Sangdoo Yun, Sungrae Park, Jeonghun Baek, Geewook Kim, Dongyoon Han , ICCV 2019 10 ,  2019
    Jupyter Notebook

    Free

  • What is the State of Neural Network Pruning?

    Jose Javier Gonzalez Ortiz, Davis Blalock, Jonathan Frankle, John Guttag , arXiv preprint ,  2020
    Python

    Free

  • What is the Role of Recurrent Neural Networks (RNNs) in an Image Caption Generator?

    Marc Tanti, Albert Gatt, Kenneth P. Camilleri , WS 2017 9 ,  2017
    Multiple

    Free

  • What is the Essence of a Claim? Cross-Domain Claim Identification

    Christian Stab, Iryna Gurevych, Johannes Daxenberger, Ivan Habernal, Steffen Eger , EMNLP 2017 9 ,  2017
    Java

    Free

  • What Is One Grain of Sand in the Desert? Analyzing Individual Neurons in Deep NLP Models

    Yonatan Belinkov, Nadir Durrani, Hassan Sajjad, Fahim Dalvi, Anthony Bau, James Glass , 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 ,  2018
    JavaScript

    Free

  • What is Normal, What is Strange, and What is Missing in a Knowledge Graph: Unified Characterization via Inductive Summarization

    Xinyi Zheng, Danai Koutra, Jilles Vreeken, Caleb Belth , Proceedings of The Web Conference 2020 ,  2020
    Python

    Free

  • What I Like About You: Legislator Personality and Legislator Approval

    Jonathan D. Klingler, Gary E. Hollibaugh, Adam Ramey , POLITICAL BEHAVIOR ,  2019
    R

    Free

  • What Goes with Red and Blue? Mapping Partisan and Ideological Associations in the Minds of Voters

    Stephen N. Goggin, John A. Henderson, Alexander Theodoridis , POLITICAL BEHAVIOR ,  2019
    R

    Free

  • What Friends Are Made of: Bilateral Linkages and Domestic Drivers of Foreign Policy Alignment with China

    Georg Strüver , FOREIGN POLICY ANALYSIS ,  2014
    R

    Free

‹12345›»
bottom logo
  • Contact Us
  • Register
© All copyrights @Science Nest - 2020

Terms of use and Privacy Policy