3C-Net: Category Count and Center Loss for Weakly-Supervised Action Localization

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Hisham Cholakkal, Sanath Narayan, Ling Shao, Fahad Shahbaz Khan
Journal/Conference Name ICCV 2019 10
Paper Category
Paper Abstract Temporal action localization is a challenging computer vision problem with numerous real-world applications. Most existing methods require laborious frame-level supervision to train action localization models. In this work, we propose a framework, called 3C-Net, which only requires video-level supervision (weak supervision) in the form of action category labels and the corresponding count. We introduce a novel formulation to learn discriminative action features with enhanced localization capabilities. Our joint formulation has three terms: a classification term to ensure the separability of learned action features, an adapted multi-label center loss term to enhance the action feature discriminability and a counting loss term to delineate adjacent action sequences, leading to improved localization. Comprehensive experiments are performed on two challenging benchmarks: THUMOS14 and ActivityNet 1.2. Our approach sets a new state-of-the-art for weakly-supervised temporal action localization on both datasets. On the THUMOS14 dataset, the proposed method achieves an absolute gain of 4.6% in terms of mean average precision (mAP), compared to the state-of-the-art. Source code is available at https://github.com/naraysa/3c-net.
Date of publication 2019
Code Programming Language Python
Comment

Copyright Researcher 2021