3D CNNs on Distance Matrices for Human Action Recognition

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Samuel Rota Bulò, Alejandro Hernandez Ruiz, Francesc Moreno-Noguer, Lorenzo Porzi
Journal/Conference Name MM '17 Proceedings of the 25th ACM international conference on Multimedia 2017 10
Paper Category
Paper Abstract In this paper we are interested in recognizing human actions from sequences of 3D skeleton data. For this purpose we combine a 3D Convolutional Neural Network with body representations based on Euclidean Distance Matrices (EDMs), which have been recently shown to be very effective to capture the geometric structure of the human pose. One inherent limitation of the EDMs, however, is that they are defined up to a permutation of the skeleton joints, i.e., randomly shuffling the ordering of the joints yields many different representations. In oder to address this issue we introduce a novel architecture that simultaneously, and in an end-to-end manner, learns an optimal transformation of the joints, while optimizing the rest of parameters of the convolutional network. The proposed approach achieves state-of-the-art results on 3 benchmarks, including the recent NTU RGB-D dataset, for which we improve on previous LSTM-based methods by more than 10 percentage points, also surpassing other CNN-based methods while using almost 1000 times fewer parameters.
Date of publication 2017
Code Programming Language Python
Comment

Copyright Researcher 2021