3D Face Modeling From Diverse Raw Scan Data

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Luan Tran, Xiaoming Liu, Feng Liu
Journal/Conference Name ICCV 2019 10
Paper Category
Paper Abstract Traditional 3D face models learn a latent representation of faces using linear subspaces from limited scans of a single database. The main roadblock of building a large-scale face model from diverse 3D databases lies in the lack of dense correspondence among raw scans. To address these problems, this paper proposes an innovative framework to jointly learn a nonlinear face model from a diverse set of raw 3D scan databases and establish dense point-to-point correspondence among their scans. Specifically, by treating input scans as unorganized point clouds, we explore the use of PointNet architectures for converting point clouds to identity and expression feature representations, from which the decoder networks recover their 3D face shapes. Further, we propose a weakly supervised learning approach that does not require correspondence label for the scans. We demonstrate the superior dense correspondence and representation power of our proposed method, and its contribution to single-image 3D face reconstruction.
Date of publication 2019
Code Programming Language Python
Comment

Copyright Researcher 2021