4-Connected Shift Residual Networks

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Pascal Mettes, Marcel Worring, Andrew Brown
Journal/Conference Name 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW)
Paper Category
Paper Abstract The shift operation was recently introduced as an alternative to spatial convolutions. The operation moves subsets of activations horizontally and/or vertically. Spatial convolutions are then replaced with shift operations followed by point-wise convolutions, significantly reducing computational costs. In this work, we investigate how shifts should best be applied to high accuracy CNNs. We apply shifts of two different neighbourhood groups to ResNet on ImageNet the originally introduced 8-connected (8C) neighbourhood shift and the less well studied 4-connected (4C) neighbourhood shift. We find that when replacing ResNet's spatial convolutions with shifts, both shift neighbourhoods give equal ImageNet accuracy, showing the sufficiency of small neighbourhoods for large images. Interestingly, when incorporating shifts to all point-wise convolutions in residual networks, 4-connected shifts outperform 8-connected shifts. Such a 4-connected shift setup gives the same accuracy as full residual networks while reducing the number of parameters and FLOPs by over 40%. We then highlight that without spatial convolutions, ResNet's downsampling/upsampling bottleneck channel structure is no longer needed. We show a new, 4C shift-based residual network, much shorter than the original ResNet yet with a higher accuracy for the same computational cost. This network is the highest accuracy shift-based network yet shown, demonstrating the potential of shifting in deep neural networks.
Date of publication 2019
Code Programming Language Unspecified
Comment

Copyright Researcher 2022