6-DoF Object Pose from Semantic Keypoints
View Researcher's Other CodesDisclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).
Please contact us in case of a broken link from here
Authors | Xiaowei Zhou, Konstantinos G. Derpanis, Aaron Chan, Kostas Daniilidis, Georgios Pavlakos |
Journal/Conference Name | Proceedings - IEEE International Conference on Robotics and Automation |
Paper Category | Artificial Intelligence |
Paper Abstract | This paper presents a novel approach to estimating the continuous six degree of freedom (6-DoF) pose (3D translation and rotation) of an object from a single RGB image. The approach combines semantic keypoints predicted by a convolutional network (convnet) with a deformable shape model. Unlike prior work, we are agnostic to whether the object is textured or textureless, as the convnet learns the optimal representation from the available training image data. Furthermore, the approach can be applied to instance- and class-based pose recovery. Empirically, we show that the proposed approach can accurately recover the 6-DoF object pose for both instance- and class-based scenarios with a cluttered background. For class-based object pose estimation, state-of-the-art accuracy is shown on the large-scale PASCAL3D+ dataset. |
Date of publication | 2017 |
Code Programming Language | Matlab |
Comment |