6-DoF Object Pose from Semantic Keypoints

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Xiaowei Zhou, Konstantinos G. Derpanis, Aaron Chan, Kostas Daniilidis, Georgios Pavlakos
Journal/Conference Name Proceedings - IEEE International Conference on Robotics and Automation
Paper Category
Paper Abstract This paper presents a novel approach to estimating the continuous six degree of freedom (6-DoF) pose (3D translation and rotation) of an object from a single RGB image. The approach combines semantic keypoints predicted by a convolutional network (convnet) with a deformable shape model. Unlike prior work, we are agnostic to whether the object is textured or textureless, as the convnet learns the optimal representation from the available training image data. Furthermore, the approach can be applied to instance- and class-based pose recovery. Empirically, we show that the proposed approach can accurately recover the 6-DoF object pose for both instance- and class-based scenarios with a cluttered background. For class-based object pose estimation, state-of-the-art accuracy is shown on the large-scale PASCAL3D+ dataset.
Date of publication 2017
Code Programming Language Matlab
Comment

Copyright Researcher 2022