A Bayesian approach to blind separation of sparse sources

View Researcher II's Other Codes

Disclaimer: “The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).”

Please contact us in case of a broken link from here

Authors C. FĂ©votte & S.J. Godsill
Journal/Conference Name IEEE Transactions on Audio, Speech and Language Processing
Paper Category
Paper Abstract We present a Bayesian approach for blind separation of linear instantaneous mixtures of sources having a sparse representation in a given basis. The distributions of the coefficients of the sources in the basis are modeled by a Student t distribution, which can be expressed as a Scale Mixture of Gaussians, and a Gibbs sampler is derived to estimate the sources, the mixing matrix, the input noise variance and also the hyperparameters of the Student t distributions. The method allows for separation of underdetermined (more sources than sensors) noisy mixtures. Results are presented with audio signals using a Modified Discrete Cosine Transfrom basis and compared with a finite mixture of Gaussians prior approach. These results show the improved sound quality obtained with the Student t prior and the better robustness to mixing matrices close to singularity of the Markov Chains Monte Carlo approach.
Date of publication 2006
Code Programming Language MATLAB
Comment

Copyright Researcher II 2021