A Fast and Robust BERT-based Dialogue State Tracker for Schema-Guided Dialogue Dataset

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Tomasz Kornuta, Yang Zhang, Evelina Bakhturina, Vahid Noroozi
Journal/Conference Name arXiv preprint
Paper Category
Paper Abstract Dialog State Tracking (DST) is one of the most crucial modules for goal-oriented dialogue systems. In this paper, we introduce FastSGT (Fast Schema Guided Tracker), a fast and robust BERT-based model for state tracking in goal-oriented dialogue systems. The proposed model is designed for the Schema-Guided Dialogue (SGD) dataset which contains natural language descriptions for all the entities including user intents, services, and slots. The model incorporates two carry-over procedures for handling the extraction of the values not explicitly mentioned in the current user utterance. It also uses multi-head attention projections in some of the decoders to have a better modelling of the encoder outputs. In the conducted experiments we compared FastSGT to the baseline model for the SGD dataset. Our model keeps the efficiency in terms of computational and memory consumption while improving the accuracy significantly. Additionally, we present ablation studies measuring the impact of different parts of the model on its performance. We also show the effectiveness of data augmentation for improving the accuracy without increasing the amount of computational resources.
Date of publication 2020
Code Programming Language Python
Comment

Copyright Researcher 2022