A General Description of Linear Time-Frequency Transforms and Formulation of a Fast, Invertible Transform That Samples the Continuous S-Transform Spectrum Nonredundantly

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors R. Brown, M. L. Lauzon, R. Frayne
Journal/Conference Name I
Paper Category
Paper Abstract Examining the frequency content of signals is critical in many applications, from neuroscience to astronomy. Many techniques have been proposed to accomplish this. One of these, the S-transform, provides simultaneous time and frequency information similar to the wavelet transform, but uses sinusoidal basis functions to produce frequency and globally referenced phase measurements. It has shown promise in many medical imaging applications but has high computational requirements. This paper presents a general transform that describes Fourier-family transforms, including the Fourier, short-time Fourier, and S- transforms. A discrete, nonredundant formulation of this transform, as well as algorithms for calculating the forward and inverse transforms are also developed. These utilize efficient sampling of the time-frequency plane and have the same computational complexity as the fast Fourier transform. When configured appropriately, this new algorithm samples the continuous S-transform spectrum efficiently and nonredundantly, allowing signals to be transformed in milliseconds rather than days, as compared to the original S-transform algorithm. The new and efficient algorithms make practical many existing signal and image processing techniques, both in biomedical and other applications.
Date of publication 2010
Code Programming Language C
Comment

Copyright Researcher 2022