A Grammar for Reproducible and Painless Extract-Transform-Load Operations on Medium Data
View Researcher's Other CodesDisclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).
Authors | Benjamin S. Baumer |
Journal/Conference Name | arXiv |
Paper Category | Other |
Paper Abstract | ABSTRACTMany interesting datasets available on the Internet are of a medium size—too big to fit into a personal computer’s memory, but not so large that they would not fit comfortably on its hard disk. In the coming years, datasets of this magnitude will inform vital research in a wide array of application domains. However, due to a variety of constraints they are cumbersome to ingest, wrangle, analyze, and share in a reproducible fashion. These obstructions hamper thorough peer-review and thus disrupt the forward progress of science. We propose a predictable and pipeable framework for R (the state-of-the-art statistical computing environment) that leverages SQL (the venerable database architecture and query language) to make reproducible research on medium data a painless reality. Supplementary material for this article is available online. |
Date of publication | 2017 |
Code Programming Language | R |
Comment |