A Kernel Loss for Solving the Bellman Equation

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Qiang Liu, Yihao Feng, Lihong Li
Journal/Conference Name NeurIPS 2019 12
Paper Category
Paper Abstract Value function learning plays a central role in many state-of-the-art reinforcement-learning algorithms. Many popular algorithms like Q-learning do not optimize any objective function, but are fixed-point iterations of some variant of Bellman operator that is not necessarily a contraction. As a result, they may easily lose convergence guarantees, as can be observed in practice. In this paper, we propose a novel loss function, which can be optimized using standard gradient-based methods without risking divergence. The key advantage is that its gradient can be easily approximated using sampled transitions, avoiding the need for double samples required by prior algorithms like residual gradient. Our approach may be combined with general function classes such as neural networks, on either on- or off-policy data, and is shown to work reliably and effectively in several benchmarks.
Date of publication 2019
Code Programming Language Unspecified

Copyright Researcher 2022