A Linear Subspace Learning Approach via Sparse Coding

View Researcher's Other Codes

MATLAB code for the paper: “A Linear Subspace Learning Approach via Sparse Coding”.

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Lei Zhang, Pengfei Zhu, Qinghua Hu and David Zhang
Journal/Conference Name 2011 International Conference on Computer Vision (ICCV 2011)
Paper Category
Paper Abstract Linear subspace learning (LSL) is a popular approach to image recognition and it aims to reveal the essential features of high dimensional data, e.g., facial images, in a lower dimensional space by linear projection. Most LSL methods compute directly the statistics of original training samples to learn the subspace. However, these methods do not effectively exploit the different contributions of different image components to image recognition. We propose a novel LSL approach by sparse coding and feature grouping. A dictionary is learned from the training dataset, and it is used to sparsely decompose the training samples. The decomposed image components are grouped into a more discriminative part (MDP) and a less discriminative part (LDP). An unsupervised criterion and a supervised criterion are then proposed to learn the desired subspace, where the MDP is preserved and the LDP is suppressed simultaneously. The experimental results on benchmark face image databases validated that the proposed methods outperform many state-of-the-art LSL schemes.
Date of publication 2011
Code Programming Language MATLAB
Comment

Copyright Researcher 2021