A multiplicative algorithm for convolutive non-negative matrix factorization based on squared euclidean distance

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Wenwu Wang, A. Cichocki, J. Chambers
Journal/Conference Name I
Paper Category
Paper Abstract Using the convolutive nonnegative matrix factorization (NMF) model due to Smaragdis, we develop a novel algorithm for matrix decomposition based on the squared Euclidean distance criterion. The algorithm features new formally derived learning rules and an efficient update for the reconstructed nonnegative matrix. Performance comparisons in terms of computational load and audio onset detection accuracy indicate the advantage of the Euclidean distance criterion over the Kullback-Leibler divergence criterion.
Date of publication 2009
Code Programming Language Python
Comment

Copyright Researcher 2022