A Novel Chaos Theory Inspired Neuronal Architecture

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Nithin Nagaraj, Harikrishnan N B
Journal/Conference Name 2019 Global Conference for Advancement in Technology, GCAT 2019
Paper Category
Paper Abstract The practical success of widely used machine learning (ML) and deep learning (DL) algorithms in Artificial Intelligence (AI) community owes to availability of large datasets for training and huge computational resources. Despite the enormous practical success of AI, these algorithms are only loosely inspired from the biological brain and do not mimic any of the fundamental properties of neurons in the brain, one such property being the chaotic firing of biological neurons. This motivates us to develop a novel neuronal architecture where the individual neurons are intrinsically chaotic in nature. By making use of the topological transitivity property of chaos, our neuronal network is able to perform classification tasks with very less number of training samples. For the MNIST dataset, with as low as $0.1 \%$ of the total training data, our method outperforms ML and matches DL in classification accuracy for up to $7$ training samples/class. For the Iris dataset, our accuracy is comparable with ML algorithms, and even with just two training samples/class, we report an accuracy as high as $95.8 \%$. This work highlights the effectiveness of chaos and its properties for learning and paves the way for chaos-inspired neuronal architectures by closely mimicking the chaotic nature of neurons in the brain.
Date of publication 2019
Code Programming Language Python

Copyright Researcher 2022