A Patch-Structure Representation Method for Quality Assessment of Contrast Changed Images

View Researcher II's Other Codes

Disclaimer: “The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).”

Please contact us in case of a broken link from here

Authors Shiqi Wang, Kede Ma, Hojatollah Yeganeh, Zhou Wang, and Weisi Lin
Journal/Conference Name IEEE Signal Processing Letters (SPL)
Paper Category
Paper Abstract Contrast is a fundamental attribute of images that plays an important role in human visual perception of image quality. With numerous approaches proposed to enhance image contrast, much less work has been dedicated to automatic quality assessment of contrast changed images. Existing approaches rely on global statistics to estimate contrast quality. Here we propose a novel local patch-based objective quality assessment method using an adaptive representation of local patch structure, which allows us to decompose any image patch into its mean intensity, signal strength and signal structure components and then evaluate their perceptual distortions in different ways. A unique feature that differentiates the proposed method from previous contrast quality models is the capability to produce a local contrast quality map, which predicts local quality variations over space and may be employed to guide contrast enhancement algorithms. Validations based on four publicly available databases show that the proposed patch-based contrast quality index (PCQI) method provides accurate predictions on the human perception of contrast variations.
Date of publication 2015
Code Programming Language MATLAB
Comment

Copyright Researcher II 2021