A PID Controller Approach for Stochastic Optimization of Deep Networks

View Researcher's Other Codes

The Pytorch code for this CVPR 2018 paper: “A PID Controller Approach for Stochastic Optimization of Deep Networks”.

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors W. An, H. Wang, Q. Sun, J. Xu, Q. Dai, L. Zhang
Journal/Conference Name Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Paper Category
Paper Abstract Deep neural networks have demonstrated their power in many computer vision applications. State-of-the-art deep architectures such as VGG, ResNet, and DenseNet are mostly optimized by the SGD-Momentum algorithm, which updates the weights by considering their past and current gradients. Nonetheless, SGD-Momentum suffers from the overshoot problem, which hinders the convergence of network training. Inspired by the prominent success of proportional-integral-derivative (PID) controller in automatic control, we propose a PID approach for accelerating deep network optimization. We first reveal the intrinsic connections between SGD-Momentum and PID based controller, then present the optimization algorithm which exploits the past, current, and change of gradients to update the network parameters. The proposed PID method reduces much the overshoot phenomena of SGD-Momentum, and it achieves up to 50% acceleration on popular deep network architectures with competitive accuracy, as verified by our experiments on the benchmark datasets including CIFAR10, CIFAR100, and Tiny-ImageNet.
Date of publication 2018
Code Programming Language PyTorch
Comment

Copyright Researcher 2021