A Pyramid CNN for Dense-Leaves Segmentation

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Daniel D. Morris
Journal/Conference Name Proceedings - 2018 15th Conference on Computer and Robot Vision, CRV 2018
Paper Category
Paper Abstract Automatic detection and segmentation of overlapping leaves in dense foliage can be a difficult task, particularly for leaves with strong textures and high occlusions. We present Dense-Leaves, an image dataset with ground truth segmentation labels that can be used to train and quantify algorithms for leaf segmentation in the wild. We also propose a pyramid convolutional neural network with multi-scale predictions that detects and discriminates leaf boundaries from interior textures. Using these detected boundaries, closed-contour boundaries around individual leaves are estimated with a watershed-based algorithm. The result is an instance segmenter for dense leaves. Promising segmentation results for leaves in dense foliage are obtained.
Date of publication 2018
Code Programming Language Python
Comment

Copyright Researcher 2022