A two-dimensional data distribution method for parallel sparse matrix-vector multiplication

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors B. Vastenhouw, R. Bisseling
Journal/Conference Name S
Paper Category
Paper Abstract A new method is presented for distributing data in sparse matrix-vector multiplication. The method is two-dimensional, tries to minimize the true communication volume, and also tries to spread the computation and communication work evenly over the processors. The method starts with a recursive bipartitioning of the sparse matrix, each time splitting a rectangular matrix into two parts with a nearly equal number of nonzeros. The communication volume caused by the split is minimized. After the matrix partitioning, the input and output vectors are partitioned with the objective of minimizing the maximum communication volume per processor. Experimental results of our implementation, Mondriaan, for a set of sparse test matrices show a reduction in communication volume compared to one-dimensional methods, and in general a good balance in the communication work. Experimental timings of an actual parallel sparse matrix-vector multiplication on an SGI Origin 3800 computer show that a sufficiently large reduction in communication volume leads to savings in execution time.
Date of publication 2005
Code Programming Language C
Comment

Copyright Researcher 2022