A Universal Music Translation Network

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Download
Authors Adam Polyak, Yaniv Taigman, Lior Wolf, Noam Mor
Journal/Conference Name 7th International Conference on Learning Representations, ICLR 2019
Paper Category
Paper Abstract We present a method for translating music across musical instruments, genres, and styles. This method is based on a multi-domain wavenet autoencoder, with a shared encoder and a disentangled latent space that is trained end-to-end on waveforms. Employing a diverse training dataset and large net capacity, the domain-independent encoder allows us to translate even from musical domains that were not seen during training. The method is unsupervised and does not rely on supervision in the form of matched samples between domains or musical transcriptions. We evaluate our method on NSynth, as well as on a dataset collected from professional musicians, and achieve convincing translations, even when translating from whistling, potentially enabling the creation of instrumental music by untrained humans.
Date of publication 2018
Code Programming Language Multiple
Comment

Copyright Researcher 2022