Accelerating Prototype-Based Drug Discovery using Conditional Diversity Networks

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Kira Radinsky, Shahar Harel
Journal/Conference Name Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
Paper Category
Paper Abstract Designing a new drug is a lengthy and expensive process. As the space of potential molecules is very large (10^23-10^60), a common technique during drug discovery is to start from a molecule which already has some of the desired properties. An interdisciplinary team of scientists generates hypothesis about the required changes to the prototype. In this work, we develop an algorithmic unsupervised-approach that automatically generates potential drug molecules given a prototype drug. We show that the molecules generated by the system are valid molecules and significantly different from the prototype drug. Out of the compounds generated by the system, we identified 35 FDA-approved drugs. As an example, our system generated Isoniazid - one of the main drugs for Tuberculosis. The system is currently being deployed for use in collaboration with pharmaceutical companies to further analyze the additional generated molecules.
Date of publication 2018
Code Programming Language Python
Comment

Copyright Researcher 2022