Acoustic hazard detection for pedestrians with obscured hearing

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Justin Lee, A. Rakotonirainy
Journal/Conference Name I
Paper Category
Paper Abstract Pedestrians' use of Motion Pictures Expert Group audio layer 3 players or mobile phones can pose the risk of being hit by motor vehicles. We present an approach for detecting a crash risk level using the computing power and the microphone of mobile devices that can be used to alert the user in advance of an approaching vehicle so as to avoid a crash. A single feature extractor classifier is not usually able to deal with the diversity of risky acoustic scenarios. In this paper, we address the problem of detection of vehicles approaching a pedestrian by a novel simple nonresource intensive acoustic method. The method uses a set of existing statistical tools to mine signal features. Audio features are adaptively thresholded for relevance and classified with a three-component heuristic. The resulting acoustic hazard detection system has a very low false-positive detection rate. The results of this study could help mobile device manufacturers to embed the presented features into future potable devices and contribute to road safety.
Date of publication 2011
Code Programming Language Matlab

Copyright Researcher 2022