Action Recognition from Depth Sequences Using Depth Motion Maps-based Local Binary Patterns

View Researcher II's Other Codes

Disclaimer: “The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).”

Please contact us in case of a broken link from here

Authors C. Chen, R. Jafari, and N. Kehtarnavaz
Journal/Conference Name IEEE Winter Conference on Applications of Computer Vision (WACV 2015)
Paper Category
Paper Abstract This paper presents a computationally efficient method for action recognition from depth video sequences. It employs the so called depth motion maps (DMMs) from three projection views (front, side and top) to capture motion cues and uses local binary patterns (LBPs) to gain a compact feature representation. Two types of fusion consisting of feature-level fusion and decision-level fusion are considered. In the feature-level fusion, LBP features from three DMMs are merged before classification while in the decision-level fusion, a soft decision-fusion rule is used to combine the classification outcomes. The introduced method is evaluated on two standard datasets and is also compared with the existing methods. The results indicate that it outperforms the existing methods and is able to process depth video sequences in real-time.
Date of publication 2015
Code Programming Language MATLAB
Comment

Copyright Researcher II 2021