Adaptive Power System Emergency Control using Deep Reinforcement Learning

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Qiuhua Huang, Renke Huang, Weituo Hao, Jie Tan, Rui Fan, Zhenyu Huang
Journal/Conference Name IEEE Transactions on Smart Grid
Paper Category
Paper Abstract Power system emergency control is generally regarded as the last safety net for grid security and resiliency. Existing emergency control schemes are usually designed offline based on either the conceived “worst” case scenario or a few typical operation scenarios. These schemes are facing significant adaptiveness and robustness issues as increasing uncertainties and variations occur in modern electrical grids. To address these challenges, this paper developed novel adaptive emergency control schemes using deep reinforcement learning (DRL) by leveraging the high-dimensional feature extraction and non-linear generalization capabilities of DRL for complex power systems. Furthermore, an open-source platform named Reinforcement Learning for Grid Control (RLGC) has been designed for the first time to assist the development and benchmarking of DRL algorithms for power system control. Details of the platform and DRL-based emergency control schemes for generator dynamic braking and under-voltage load shedding are presented. Robustness of the developed DRL method to different simulation scenarios, model parameter uncertainty and noise in the observations is investigated. Extensive case studies performed in both the two-area, four-machine system and the IEEE 39-bus system have demonstrated excellent performance and robustness of the proposed schemes.
Date of publication 2019
Code Programming Language Jupyter Notebook
Comment

Copyright Researcher 2022