Adjusting Decision Boundary for Class Imbalanced Learning

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Byungju Kim, Junmo Kim
Journal/Conference Name IEEE Access
Paper Category
Paper Abstract Training of deep neural networks heavily depends on the data distribution. In particular, the networks easily suffer from class imbalance. The trained networks would recognize the frequent classes better than the infrequent classes. To resolve this problem, existing approaches typically propose novel loss functions to obtain better feature embedding. In this paper, we argue that drawing a better decision boundary is as important as learning better features. Inspired by observations, we investigate how the class imbalance affects the decision boundary and deteriorates the performance. We also investigate the feature distributional discrepancy between training and test time. As a result, we propose a novel, yet simple method for class imbalanced learning. Despite its simplicity, our method shows outstanding performance. In particular, the experimental results show that we can significantly improve the network by scaling the weight vectors, even without additional training process.
Date of publication 2019
Code Programming Language Python

Copyright Researcher 2022