Adversarial Audio Synthesis

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Miller Puckette, Chris Donahue, Julian McAuley
Journal/Conference Name ICLR 2019 5
Paper Category
Paper Abstract Audio signals are sampled at high temporal resolutions, and learning to synthesize audio requires capturing structure across a range of timescales. Generative adversarial networks (GANs) have seen wide success at generating images that are both locally and globally coherent, but they have seen little application to audio generation. In this paper we introduce WaveGAN, a first attempt at applying GANs to unsupervised synthesis of raw-waveform audio. WaveGAN is capable of synthesizing one second slices of audio waveforms with global coherence, suitable for sound effect generation. Our experiments demonstrate that, without labels, WaveGAN learns to produce intelligible words when trained on a small-vocabulary speech dataset, and can also synthesize audio from other domains such as drums, bird vocalizations, and piano. We compare WaveGAN to a method which applies GANs designed for image generation on image-like audio feature representations, finding both approaches to be promising.
Date of publication 2018
Code Programming Language Multiple

Copyright Researcher 2022