Aggregating Deep Convolutional Features for Image Retrieval

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Victor Lempitsky, Artem Babenko
Journal/Conference Name Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics
Paper Category
Paper Abstract Several recent works have shown that image descriptors produced by deep convolutional neural networks provide state-of-the-art performance for image classification and retrieval problems. It has also been shown that the activations from the convolutional layers can be interpreted as local features describing particular image regions. These local features can be aggregated using aggregation approaches developed for local features (e.g. Fisher vectors), thus providing new powerful global descriptors. In this paper we investigate possible ways to aggregate local deep features to produce compact global descriptors for image retrieval. First, we show that deep features and traditional hand-engineered features have quite different distributions of pairwise similarities, hence existing aggregation methods have to be carefully re-evaluated. Such re-evaluation reveals that in contrast to shallow features, the simple aggregation method based on sum pooling provides arguably the best performance for deep convolutional features. This method is efficient, has few parameters, and bears little risk of overfitting when e.g. learning the PCA matrix. Overall, the new compact global descriptor improves the state-of-the-art on four common benchmarks considerably.
Date of publication 2015
Code Programming Language Multiple

Copyright Researcher 2022