Allelic diversity for neutral markers retains a higher adaptive potential for quantitative traits than expected heterozygosity

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Ana Vilas, Andrés Pérez-Figueroa, Humberto Quesada, Armando Caballero
Journal/Conference Name Molecular Ecology
Paper Category , ,
Paper Abstract The adaptive potential of a population depends on the amount of additive genetic variance for quantitative traits of evolutionary importance. This variance is a direct function of the expected frequency of heterozygotes for the loci which affect the trait (QTL). It has been argued, but not demonstrated experimentally, that long-term response to selection is more dependent on QTL allelic diversity than on QTL heterozygosity. Conservation programmes, aimed at preserving this variation, usually rely on neutral markers rather than on quantitative traits for making decisions on management. Here, we address, both through simulation analyses and experimental studies with Drosophila melanogaster, the question of whether allelic diversity for neutral markers is a better indicator of a high adaptive potential than expected heterozygosity. In both experimental and simulation studies, we established synthetic populations for which either heterozygosity or allelic diversity was maximized using information from QTL (simulations) or unlinked neutral markers (simulations and experiment). The synthetic populations were selected for the quantitative trait to evaluate the evolutionary potential provided by the two optimization methods. Our results show that maximizing the number of alleles of a low number of markers implies higher responses to selection than maximizing their heterozygosity.
Date of publication 2015
Code Programming Language Shell

Copyright Researcher 2022