An empirical wildfire risk analysis: the probability of a fire spreading to the urban interface in Sydney, Australia

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Owen Price, Rittick Borah, Ross Bradstock, Trent Penman
Journal/Conference Name International Journal of Wildland Fire
Paper Category
Paper Abstract We present a method and case study to predict and map the likelihood of wildfires spreading to the urban interface through statistical analysis of past fire patterns using 15 000 lines from 677 fires with known ignition points and date and random potential end points on the urban interface of Sydney, Australia. A binomial regression approach was used to model whether the fire burnt to the end point of the lines as a function of measures of distance, fuel, weather and barriers to spread. Fire weather had the strongest influence on burning likelihood followed by the percentage of the line that was forested, distance and time since last fire. Fuel treatments would substantially reduce risk from fires starting 1–4 km away from the interface. The model captured 90% of variation in burning with 98% predictive accuracy on test data and was not affected by spatial autocorrelation. We apply the method to map fire risk in Sydney and discuss how the method could be expanded to estimate total risk (from ignition to impact on assets). The method has considerable promise for predicting risk, especially as a complement to simulation methods.
Date of publication 2015
Code Programming Language R
Comment

Copyright Researcher 2021