An Object-Oriented Framework for Statistical Simulation: The R Package simFrame

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Andreas Alfons, Matthias Templ, Peter Filzmoser
Journal/Conference Name Journal of Statistical Software
Paper Category
Paper Abstract Simulation studies are widely used by statisticians to gain insight into the quality of developed methods. Usually some guidelines regarding, e.g., simulation designs, contamination, missing data models or evaluation criteria are necessary in order to draw meaningful conclusions. The R package simFrame is an object-oriented framework for statistical simulation, which allows researchers to make use of a wide range of simulation designs with a minimal effort of programming. Its object-oriented implementation provides clear interfaces for extensions by the user. Since statistical simulation is an embarrassingly parallel process, the framework supports parallel computing to increase computational performance. Furthermore, an appropriate plot method is selected automatically depending on the structure of the simulation results. In this paper, the implementation of simFrame is discussed in great detail and the functionality of the framework is demonstrated in examples for different simulation designs.
Date of publication 2010
Code Programming Language R
Comment

Copyright Researcher 2021