An R Package for Probabilistic Latent Feature Analysis of Two-Way Two-Mode Frequencies

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Michel Meulders
Journal/Conference Name Journal of Statistical Software
Paper Category
Paper Abstract A common strategy for the analysis of object-attribute associations is to derive a low- dimensional spatial representation of objects and attributes which involves a compensatory model (e.g., principal components analysis) to explain the strength of object-attribute associations. As an alternative, probabilistic latent feature models assume that objects and attributes can be represented as a set of binary latent features and that the strength of object-attribute associations can be explained as a non-compensatory (e.g., disjunctive or conjunctive) mapping of latent features. In this paper, we describe the R package plfm which comprises functions for conducting both classical and Bayesian probabilistic latent feature analysis with disjunctive or a conjunctive mapping rules. Print and summary functions are included to summarize results on parameter estimation, model selection and the goodness of fit of the models. As an example the functions of plfm are used to analyze product-attribute data on the perception of car models, and situation-behavior associations on the situational determinants of anger-related behavior.
Date of publication 2013
Code Programming Language R
Comment

Copyright Researcher 2021