An Unsupervised Game-theoretic Approach to Salient Object Detection

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Yu Zeng, Mengyang Feng, Huchuan Lu, and Ali Borji
Journal/Conference Name IEEE Transactions on Image Processing
Paper Category
Paper Abstract We propose a novel unsupervised game-theoretic salient object detection algorithm that does not require labeled training data. First, saliency detection problem is formulated as a non-cooperative game, hereinafter referred to as Saliency Game, in which image regions are players who choose to be “background” or “foreground” as their pure strategies. A payoff function is constructed by exploiting multiple cues and combining complementary features. Saliency maps are generated according to each region's strategy in the Nash equilibrium of the proposed Saliency Game. Second, we explore the complementary relationship between color and deep features and propose an iterative random walk algorithm to combine saliency maps produced by the Saliency Game using different features. Iterative random walk allows sharing information across feature spaces, and detecting objects that are otherwise very hard to detect. Extensive experiments over six challenging data sets demonstrate the superiority of our proposed unsupervised algorithm compared with several state-of-the-art supervised algorithms.
Date of publication 2018
Code Programming Language MATLAB
Comment

Copyright Researcher 2021