Autocalibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: an evaluation on four continents

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Vincent T van Hees, Zhou Fang, +7 authors Soeren Brage
Journal/Conference Name Journal of applied physiology
Paper Category
Paper Abstract Wearable acceleration sensors are increasingly used for the assessment of free-living physical activity. Acceleration sensor calibration is a potential source of error. This study aims to describe and evaluate an autocalibration method to minimize calibration error using segments within the free-living records (no extra experiments needed). The autocalibration method entailed the extraction of nonmovement periods in the data, for which the measured vector magnitude should ideally be the gravitational acceleration (1 g); this property was used to derive calibration correction factors using an iterative closest-point fitting process. The reduction in calibration error was evaluated in data from four cohorts: UK (n = 921), Kuwait (n = 120), Cameroon (n = 311), and Brazil (n = 200). Our method significantly reduced calibration error in all cohorts (P 0.05). Temperature correction coefficients were highest for the z-axis, e.g., 19.6-mg offset per 5°C. Further, application of the autocalibration method had a significant impact on typical metrics used for describing human physical activity, e.g., in Brazil average wrist acceleration was 0.2 to 51% lower than uncalibrated values depending on metric selection (P < 0.01). The autocalibration method as presented helps reduce the calibration error in wearable acceleration sensor data and improves comparability of physical activity measures across study locations. Temperature ultization seems essential when temperature deviates substantially from the average temperature in the record but not for multiday summary measures.
Date of publication 2014
Code Programming Language R
Comment

Copyright Researcher 2021