Automatic fish detection in underwater videos by a deep neural network-based hybrid motion learning system

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Ahmad Salman, Shoaib Ahmad Siddiqui, Faisal Shafait, Ajmal Mian, Mark R Shortis, Khawar Khurshid, Adrian Ulges, Ulrich Schwanecke
Journal/Conference Name ICES Journal of Marine Science
Paper Category
Paper Abstract It is interesting to develop effective fish sampling techniques using underwater videos and image processing to automatically estimate and consequently monitor the fish biomass and assemblage in water bodies. Such approaches should be robust against substantial variations in scenes due to poor luminosity, orientation of fish, seabed structures, movement of aquatic plants in the background and image diversity in the shape and texture among fish of different species. Keeping this challenge in mind, we propose a unified approach to detect freely moving fish in unconstrained underwater environments using a Region-Based Convolutional Neural Network, a state-of-the-art machine learning technique used to solve generic object detection and localization problems. To train the neural network, we employ a novel approach to utilize motion information of fish in videos via background subtraction and optical flow, and subsequently combine the outcomes with the raw image to generate fish-dependent candidate regions. We use two benchmark datasets extracted from a large Fish4Knowledge underwater video repository, Complex Scenes dataset and the LifeCLEF 2015 fish dataset to validate the effectiveness of our hybrid approach. We achieve a detection accuracy (F-Score) of 87.44% and 80.02% respectively on these datasets, which advocate the utilization of our approach for fish detection task.
Date of publication 2019
Code Programming Language Python

Copyright Researcher 2022