Automatic fish species classification in underwater videos: exploiting pre-trained deep neural network models to compensate for limited labelled data

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Shoaib Ahmed Siddiqui, Ahmad Salman, Muhammad Imran Malik, Faisal Shafait, Ajmal Mian, Mark R Shortis, Euan S Harvey
Journal/Conference Name ICES Journal of Marine Science
Paper Category
Paper Abstract There is a need for automatic systems that can reliably detect, track and classify fish and other marine species in underwater videos without human intervention. Conventional computer vision techniques do not perform well in underwater conditions where the background is complex and the shape and textural features of fish are subtle. Data-driven classification models like neural networks require a huge amount of labelled data, otherwise they tend to over-fit to the training data and fail on unseen test data which is not involved in training. We present a state-of-the-art computer vision method for fine-grained fish species classification based on deep learning techniques. A cross-layer pooling algorithm using a pre-trained Convolutional Neural Network as a generalized feature detector is proposed, thus avoiding the need for a large amount of training data. Classification on test data is performed by a SVM on the features computed through the proposed method, resulting in classification accuracy of 94.3% for fish species from typical underwater video imagery captured off the coast of Western Australia. This research advocates that the development of automated classification systems which can identify fish from underwater video imagery is feasible and a cost-effective alternative to manual identification by humans.
Date of publication 2017
Code Programming Language Python
Comment

Copyright Researcher 2022