Automatic relevance determination in nonnegative matrix factorization with the beta-divergence

View Researcher II's Other Codes

Disclaimer: “The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).”

Please contact us in case of a broken link from here

Authors V.Y.F. Tan & C. FĂ©votte
Journal/Conference Name IEEE Transactions on Pattern Analysis and Machine Intelligence
Paper Category
Paper Abstract This paper addresses the estimation of the latent dimensionality in nonnegative matrix factorization (NMF) with the beta-divergence. The beta-divergence is a family of cost functions that includes the squared euclidean distance, Kullback-Leibler (KL) and Itakura-Saito (IS) divergences as special cases. Learning the model order is important as it is necessary to strike the right balance between data fidelity and overfitting. We propose a Bayesian model based on automatic relevance determination (ARD) in which the columns of the dictionary matrix and the rows of the activation matrix are tied together through a common scale parameter in their prior. A family of majorization-minimization (MM) algorithms is proposed for maximum a posteriori (MAP) estimation. A subset of scale parameters is driven to a small lower bound in the course of inference, with the effect of pruning the corresponding spurious components. We demonstrate the efficacy and robustness of our algorithms by performing extensive experiments on synthetic data, the swimmer dataset, a music decomposition example, and a stock price prediction task.
Date of publication 2013
Code Programming Language MATLAB

Copyright Researcher II 2022