bartMachine: Machine Learning with Bayesian Additive Regression Trees

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Adam Kapelner, Justin Bleich
Journal/Conference Name Journal of Statistical Software
Paper Category
Paper Abstract We present a new package in R implementing Bayesian additive regression trees (BART). The package introduces many new features for data analysis using BART such as variable selection, interaction detection, model diagnostic plots, incorporation of missing data and the ability to save trees for future prediction. It is significantly faster than the current R implementation, parallelized, and capable of handling both large sample sizes and high-dimensional data.
Date of publication 2013
Code Programming Language R
Comment

Copyright Researcher 2021