Batch Bayesian Optimization via Multi-objective Acquisition Ensemble for Automated Analog Circuit Design

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Dian Zhou, Xuan Zeng, Wenlong Lyu, Changhao Yan, Fan Yang
Journal/Conference Name ICML 2018 7
Paper Category
Paper Abstract Bayesian optimization methods are promising for the optimization of black-box functions that are expensive to evaluate. In this paper, a novel batch Bayesian optimization approach is proposed. The parallelization is realized via a multi-objective ensemble of multiple acquisition functions. In each iteration, the multi-objective optimization of the multiple acquisition functions is performed to search for the Pareto front of the acquisition functions. The batch of inputs are then selected from the Pareto front. The Pareto front represents the best trade-off between the multiple acquisition functions. Such a policy for batch Bayesian optimization can significantly improve the efficiency of optimization. The proposed method is compared with several state-of-the-art batch Bayesian optimization algorithms using analytical benchmark functions and real-world analog integrated circuits. The experimental results show that the proposed method is competitive compared with the state-of-the-art algorithms.
Date of publication 2018
Code Programming Language C++

Copyright Researcher 2022