Bayesian forecasting of many count-valued time series

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Lindsay Berry, Mike West
Journal/Conference Name Journal of Business and Economic Statistics
Paper Category
Paper Abstract This paper develops forecasting methodology and application of new classes of dynamic models for time series of non-negative counts. Novel univariate models synthesise dynamic generalized linear models for binary and conditionally Poisson time series, with dynamic random effects for over-dispersion. These models allow use of dynamic covariates in both binary and non-zero count components. Sequential Bayesian analysis allows fast, parallel analysis of sets of decoupled time series. New multivariate models then enable information sharing in contexts when data at a more highly aggregated level provide more incisive inferences on shared patterns such as trends and seasonality. A novel multi-scale approach-- one new example of the concept of decouple/recouple in time series-- enables information sharing across series. This incorporates cross-series linkages while insulating parallel estimation of univariate models, hence enables scalability in the number of series. The major motivating context is supermarket sales forecasting. Detailed examples drawn from a case study in multi-step forecasting of sales of a number of related items showcase forecasting of multiple series, with discussion of forecast accuracy metrics and broader questions of probabilistic forecast accuracy assessment.
Date of publication 2019
Code Programming Language Python
Comment

Copyright Researcher 2021