Beamformer Designs for MISO Broadcast Channels with Zero-Forcing Dirty Paper Coding

View Researcher's Other Codes

MATLAB code for the paper: “Beamformer Designs for MISO Broadcast Channels with Zero-Forcing Dirty Paper Coding”.

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Le-Nam Tran, Markku Juntti, Mats Bengtsson, and Bjorn Ottersten
Journal/Conference Name IEEE Transactions on Wireless Communications
Paper Category
Paper Abstract We consider the beamformer design for multiple-input multiple-output (MISO) broadcast channels (MISO BCs) using zero-forcing dirty paper coding (ZF-DPC). Assuming a sum power constraint (SPC), most previously proposed beamformer designs are based on the QR decomposition (QRD), which is a natural choice to satisfy the ZF constraints. However, the optimality of the QRD-based design for ZF-DPC has remained unknown. In this paper, first, we analytically establish that the QRD-based design is indeed optimal for any performance measure under a SPC. Then, we propose an optimal beamformer design method for ZF-DPC with per-antenna power constraints (PAPCs), using a convex optimization framework. The beamformer design is first formulated as a rank-1-constrained optimization problem. Exploiting the special structure of the ZF-DPC scheme, we prove that the rank constraint can be relaxed and still provide the same solution. In addition, we propose a fast converging algorithm to the beamformer design problem, under the duality framework between the BCs and multiple access channels (MACs). More specifically, we show that a BC with ZF-DPC has the dual MAC with ZF-based successive interference cancellation (ZF-SIC). In this way, the beamformer design for ZF-DPC is transformed into a power allocation problem for ZF-SIC, which can be solved more efficiently.
Date of publication 2013
Code Programming Language MATLAB
Comment

Copyright Researcher 2021