Bi-Directional Cascade Network for Perceptual Edge Detection

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Download
Authors Tiejun Huang, Yanhu Shan, Shiliang Zhang, Jianzhong He, Ming Yang
Journal/Conference Name CVPR 2019 6
Paper Category
Paper Abstract Exploiting multi-scale representations is critical to improve edge detection for objects at different scales. To extract edges at dramatically different scales, we propose a Bi-Directional Cascade Network (BDCN) structure, where an individual layer is supervised by labeled edges at its specific scale, rather than directly applying the same supervision to all CNN outputs. Furthermore, to enrich multi-scale representations learned by BDCN, we introduce a Scale Enhancement Module (SEM) which utilizes dilated convolution to generate multi-scale features, instead of using deeper CNNs or explicitly fusing multi-scale edge maps. These new approaches encourage the learning of multi-scale representations in different layers and detect edges that are well delineated by their scales. Learning scale dedicated layers also results in compact network with a fraction of parameters. We evaluate our method on three datasets, i.e., BSDS500, NYUDv2, and Multicue, and achieve ODS Fmeasure of 0.828, 1.3% higher than current state-of-the art on BSDS500. The code has been available at https://github.com/pkuCactus/BDCN.
Date of publication 2019
Code Programming Language Multiple
Comment

Copyright Researcher 2022