blockcluster: An R Package for Model-Based Co-Clustering

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Parmeet S. Bhatia, Serge Iovleff, GĂ©rard Govaert
Journal/Conference Name Journal of Statistical Software
Paper Category
Paper Abstract Simultaneous clustering of rows and columns, usually designated by bi-clustering, coclustering or block clustering, is an important technique in two way data analysis. A new standard and efficient approach has been recently proposed based on the latent block model (Govaert and Nadif 2003) which takes into account the block clustering problem on both the individual and variable sets. This article presents our R package blockcluster for co-clustering of binary, contingency and continuous data based on these very models. In this document, we will give a brief review of the model-based block clustering methods, and we will show how the R package blockcluster can be used for co-clustering.
Date of publication 2017
Code Programming Language R

Copyright Researcher 2022