Bounded, efficient and multiply robust estimation of average treatment effects using instrumental variables

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Linbo Wang, Eric J Tchetgen Tchetgen
Journal/Conference Name Journal of the Royal Statistical Society
Paper Category ,
Paper Abstract Instrumental variables (IVs) are widely used for estimating causal effects in the presence of unmeasured confounding. Under the standard IV model, however, the average treatment effect (ATE) is only partially identifiable. To address this, we propose novel assumptions that allow for identification of the ATE. Our identification assumptions are clearly separated from model assumptions needed for estimation, so that researchers are not required to commit to a specific observed data model in establishing identification. We then construct multiple estimators that are consistent under three different observed data models, and multiply robust estimators that are consistent in the union of these observed data models. We pay special attention to the case of binary outcomes, for which we obtain bounded estimators of the ATE that are guaranteed to lie between -1 and 1. Our approaches are illustrated with simulations and a data analysis evaluating the causal effect of education on earnings.
Date of publication 2016
Code Programming Language R

Copyright Researcher 2022