bsamGP: An R Package for Bayesian Spectral Analysis Models Using Gaussian Process Priors

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Seongil Jo, Taeryon Choi, Beomjo Park, Peter J. Lenk
Journal/Conference Name Journal of Statistical Software
Paper Category
Paper Abstract The Bayesian spectral analysis model (BSAM) is a powerful tool to deal with semiparametric methods in regression and density estimation based on the spectral representation of Gaussian process priors. The bsamGP package for R provides a comprehensive set of programs for the implementation of fully Bayesian semiparametric methods based on BSAM. Currently, bsamGP includes semiparametric additive models for regression, generalized models and density estimation. In particular, bsamGP deals with constrained regression models with monotone, convex/concave, S-shaped and U-shaped functions by modeling derivatives of regression functions as squared Gaussian processes. bsamGP also contains Bayesian model selection procedures for testing the adequacy of a parametric model relative to a non-specific semiparametric alternative and the existence of the shape restriction. To maximize computational efficiency, we carry out posterior sampling algorithms of all models using compiled Fortran code. The package is illustrated through Bayesian semiparametric analyses of synthetic data and benchmark data.
Date of publication 2019
Code Programming Language R
Comment

Copyright Researcher 2021