CA-EHN: Commonsense Analogy from E-HowNet

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Peng-Hsuan Li, Wei-Yun Ma, Tsan-Yu Yang
Journal/Conference Name LREC 2020 5
Paper Category
Paper Abstract Embedding commonsense knowledge is crucial for end-to-end models to generalize inference beyond training corpora. However, existing word analogy datasets have tended to be handcrafted, involving permutations of hundreds of words with only dozens of pre-defined relations, mostly morphological relations and named entities. In this work, we model commonsense knowledge down to word-level analogical reasoning by leveraging E-HowNet, an ontology that annotates 88K Chinese words with their structured sense definitions and English translations. We present CA-EHN, the first commonsense word analogy dataset containing 90,505 analogies covering 5,656 words and 763 relations. Experiments show that CA-EHN stands out as a great indicator of how well word representations embed commonsense knowledge. The dataset is publicly available at https://github.com/ckiplab/CA-EHN.
Date of publication 2019
Code Programming Language Unspecified
Comment

Copyright Researcher 2022