CACNA1C gene regulates behavioral strategies in operant rule learning

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Georgia Koppe, Anne Stephanie Mallien, Stefan Berger, Dusan Bartsch, Peter Gass, Barbara Vollmayr, Daniel Durstewitz
Journal/Conference Name PLoS Biology
Paper Category
Paper Abstract Behavioral experiments are usually designed to tap into a specific cognitive function, but animals may solve a given task through a variety of different and individual behavioral strategies, some of them not foreseen by the experimenter. Animal learning may therefore be seen more as the process of selecting among, and adapting, potential behavioral policies, rather than mere strengthening of associative links. Calcium influx through high-voltage-gated Ca2+ channels is central to synaptic plasticity, and altered expression of Cav1.2 channels and the CACNA1C gene have been associated with severe learning deficits and psychiatric disorders. Given this, we were interested in how specifically a selective functional ablation of the Cacna1c gene would modulate the learning process. Using a detailed, individual-level analysis of learning on an operant cue discrimination task in terms of behavioral strategies, combined with Bayesian selection among computational models estimated from the empirical data, we show that a Cacna1c knockout does not impair learning in general but has a much more specific effect the majority of Cacna1c knockout mice still managed to increase reward feedback across trials but did so by adapting an outcome-based strategy, while the majority of matched controls adopted the experimentally intended cue-association rule. Our results thus point to a quite specific role of a single gene in learning and highlight that much more mechanistic insight could be gained by examining response patterns in terms of a larger repertoire of potential behavioral strategies. The results may also have clinical implications for treating psychiatric disorders.
Date of publication 2017
Code Programming Language Matlab

Copyright Researcher 2022