Can You Trust This Prediction? Auditing Pointwise Reliability After Learning

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Peter Schulam, Suchi Saria
Journal/Conference Name arXiv preprint
Paper Category
Paper Abstract To use machine learning in high stakes applications (e.g. medicine), we need tools for building confidence in the system and evaluating whether it is reliable. Methods to improve model reliability often require new learning algorithms (e.g. using Bayesian inference to obtain uncertainty estimates). An alternative is to audit a model after it is trained. In this paper, we describe resampling uncertainty estimation (RUE), an algorithm to audit the pointwise reliability of predictions. Intuitively, RUE estimates the amount that a prediction would change if the model had been fit on different training data. The algorithm uses the gradient and Hessian of the model's loss function to create an ensemble of predictions. Experimentally, we show that RUE more effectively detects inaccurate predictions than existing tools for auditing reliability subsequent to training. We also show that RUE can create predictive distributions that are competitive with state-of-the-art methods like Monte Carlo dropout, probabilistic backpropagation, and deep ensembles, but does not depend on specific algorithms at train-time like these methods do.
Date of publication 2019
Code Programming Language Unspecified
Comment

Copyright Researcher 2022