• Find code on Google Scholar, Semantic Scholar, Microsoft Academic, ArXiv using our Browser Extension!

    Add to Chrome
top logo
  • 0 itemsFree
  • Categories
    • Agricultural and Biological Sciences
      • Agricultural Sciences
    • Arts and Humanities
    • Biochemistry
    • Business and Management
    • Chemistry
      • Analytical Chemistry
    • Computer Science
      • Artificial Intelligence
    • Decision Sciences
    • Earth and Environmental Sciences
    • Economics and Econometrics
      • Econometrics
      • Experimental Economics
      • Finance
    • Energy
    • Engineering
      • Aerospace Engineering
      • Electrical and Computer Engineering
    • Health Professions
    • Immunology and Microbiology
    • Materials Science
    • Mathematics
      • Mathematical Sciences
    • Medicine
    • Neuroscience
    • Nursing
    • Pharmacology
      • Toxicology and Pharmaceutics
    • Physics and Astronomy
      • Physics
    • Psychology
    • Social Sciences
    • Veterinary
  • Researchers
  • About us
  • Register
  • Login
  • FAQ
Science NestCategoriesComputer Science
Filter:
Price Price
Title Title
Date Date
  • Model-Independent Online Learning for Influence Maximization

    Sharan Vaswani, Branislav Kveton, Zheng Wen, Mohammad Ghavamzadeh, Laks V. S. Lakshmanan, and Mark Schmidt , International Conference on Machine Learning ,  2017
    MATLAB

    Free

  • Convergence Rates for Greedy Kaczmarz Algorithms, and Faster Randomized Kaczmarz Rules Using the Orthogonality Graph

    Julie Nutini, Behrooz Sepehry, Issam H. Laradji, Mark W. Schmidt, Hoyt A. Koepke , Uncertainty in Artificial Intelligence ,  2016
    Python

    Free

  • Coordinate descent converges faster with the Gauss-Southwell rule than random selection

    Julie Nutini, Mark W. Schmidt, Issam H. Laradji, Michael P. Friedlander, Hoyt A. Koepke , International Conference on Machine Learning ,  2015
    Python

    Free

  • Stop Wasting My Gradients: Practical SVRG

    Reza Babanezhad, Mohamed Osama Ahmed, Alim Virani, Mark W. Schmidt, Jakub Konecný , Neural Information Processing Systems ,  2015
    MATLAB

    Free

  • Non-Uniform Stochastic Average Gradient Method for Training Conditional Random Fields

    Mark W. Schmidt, Reza Babanezhad, Mohamed Osama Ahmed, Aaron Defazio, Ann Clifton , International Conference on Artificial Intelligence and Statistics ,  2015
    MATLAB

    Free

  • Minimizing Finite Sums with the Stochastic Average Gradient

    Mark W. Schmidt, Nicolas Le Roux, Francis R. Bach , Mathematical Programming ,  2017
    MATLAB

    Free

  • Hybrid Deterministic-Stochastic Methods for Data Fitting

    Michael P. Friedlander, Mark W. Schmidt , SIAM Journal on Scientific Computing ,  2012
    MATLAB

    Free

  • On Sparse, Spectral and Other Parameterizations of Binary Probabilistic Models

    David Buchman, Mark W. Schmidt, Shakir Mohamed, David Poole, Nando de Freitas , International Conference on Artificial Intelligence and Statistics ,  2012
    MATLAB

    Free

  • Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization

    Mark W. Schmidt, Nicolas Le Roux, Francis R. Bach , Neural Information Processing Systems ,  2011
    MATLAB

    Free

  • Causal Learning without DAGs

    David Duvenaud, Daniel Eaton, Kevin Murphy, Mark Schmidt , Neural Information Processing Systems ,  2008
    MATLAB

    Free

  • Optimizing Costly Functions with Simple Constraints: A Limited-Memory Projected Quasi-Newton Algorithm

    Mark W. Schmidt, Ewout van den Berg, Michael P. Friedlander, Kevin P. Murphy , International Conference on Artificial Intelligence and Statistics ,  2009
    MATLAB

    Free

  • Modeling Discrete Interventional Data using Directed Cyclic Graphical Models

    Mark W. Schmidt, Kevin P. Murphy , Uncertainty in Artificial Intelligence ,  2009
    MATLAB

    Free

  • Structure Learning in Random Fields for Heart Motion Abnormality Detection

    Mark W. Schmidt, Kevin P. Murphy, Glenn Fung, Rómer Rosales , Computer Vision and Pattern Recognition ,  2008
    MATLAB

    Free

  • Learning Graphical Model Structure using L1-Regularization Paths

    Mark W. Schmidt, Alexandru Niculescu-Mizil, Kevin P. Murphy , National Conference on Artificial Intelligence ,  2007
    MATLAB

    Free

  • Accelerated Training of Conditional Random Fields with Stochastic Gradient Methods

    S. V. N. Vishwanathan, Nicol N. Schraudolph, Mark W. Schmidt, Kevin P. Murphy , International Conference on Machine Learning ,  2006
    MATLAB/CPP

    Free

  • MASAGA: A Linearly-Convergent Stochastic First-Order Method for Optimization on Manifolds

    Reza Babanezhad, Issam H. Laradji, Alireza Shafaei, Mark W. Schmidt , ECML/PKDD ,  2018
    Pytorch

    Free

  • Does Your Model Know the Digit 6 is Not a Cat? A Less Biased Evaluation of “Outlier” Detectors

    Alireza Shafaei, Mark W. Schmidt, James J. Little , ArXiv ,  2018
    PyTorch

    Free

  • Inferring Parameters for an Elementary Step Model of DNA Structure Kinetics with Locally Context-Dependent Arrhenius Rates

    Sedigheh Zolaktaf, Frits Dannenberg, +5 authors Erik Winfree , DNA ,  2017
    Python

    Free

  • Block-Coordinate Frank-Wolfe Optimization for Structural SVMs

    Simon Lacoste-Julien, Martin Jaggi, Mark W. Schmidt, Patrick Pletscher , INTERNATIONAL CONFERENCE ON MACHINE LEARNING ,  2013
    MATLAB

    Free

  • A Stochastic Gradient Method with an Exponential Convergence Rate for Finite Training Sets

    Nicolas Le Roux, Mark W. Schmidt, Francis R. Bach , NIPS ,  2012
    MATLAB

    Free

  • Projected Newton-type Methods in Machine Learning

    Mark W. Schmidt, Dongmin Kim, Suvrit Sra , MIT Press ,  2011
    MATLAB

    Free

  • Convex Structure Learning in Log-Linear Models: Beyond Pairwise Potentials

    Mark W. Schmidt, Kevin P. Murphy , AISTATS ,  2010
    MATLAB

    Free

  • Group Sparsity via Linear-Time Projection

    EWOUT, Van Den, Harmen van den Berg, Mark W. Schmidt, Michael P. Friedlander, Kevin Murphy , UBC Technical Report ,  2008
    MATLAB

    Free

  • Fast Patch-based Style Transfer of Arbitrary Styles

    Tian Qi Chen, Mark W. Schmidt , ArXiv ,  2016
    Lua

    Free

  • A simpler approach to obtaining an O(1/t) convergence rate for projected stochastic subgradient descent

    Simon Lacoste-Julien, Mark W. Schmidt, Francis R. Bach , ARXIV: LEARNING ,  2012
    MATLAB/C

    Free

  • Generalized Fast Approximate Energy Minimization via Graph Cuts: Alpha-Expansion Beta-Shrink Moves

    Mark W. Schmidt, Karteek Alahari École Normale Supérieure , UNCERTAINTY IN ARTIFICIAL INTELLIGENCE ,  2011
    MATLAB

    Free

  • Fast Optimization Methods for L1-Regularization: A Comparative Study and 2 New Approaches

    Mark W. Schmidt1, Glenn Fung2, Rómer Rosales2 1University of British Columbia, 2Siemens , EUROPEAN CONFERENCE ON MACHINE LEARNING ,  2007
    MATLAB

    Free

  • machine learning

    David , The 31st International Conference on Machine Learning (ICML) ,  2014
    C++

    $10.00

  • Unsupervised Training for 3D Morphable Model Regression

    Daniel Vlasic, Aaron Maschinot, Aaron Sarna, Kyle Genova, Forrester Cole, William T. Freeman , CVPR 2018 6 ,  2018
    Python

    Free

  • Riemannian Normalizing Flow on Variational Wasserstein Autoencoder for Text Modeling

    Prince Zizhuang Wang, William Yang Wang , NAACL 2019 6 ,  2019
    Python

    Free

  • Cold-Start Aware User and Product Attention for Sentiment Classification

    Jihyeok Kim, Reinald Kim Amplayo, Sua Sung, Seung-won Hwang , ACL 2018 7 ,  2018
    Python

    Free

  • Towards Binary-Valued Gates for Robust LSTM Training

    Fei Tian, Zhuohan Li, Wei Chen, Di He, Tie-Yan Liu, Liwei Wang, Tao Qin , ICML 2018 7 ,  2018
    Python

    Free

  • Automatic Post-Editing of Machine Translation: A Neural Programmer-Interpreter Approach

    Thuy-Trang Vu, Gholamreza Haffari , EMNLP 2018 10 ,  2018
    Python

    Free

  • Practical Bayesian Optimization of Machine Learning Algorithms

    Ryan P. Adams, Jasper Snoek, Hugo Larochelle , NeurIPS 2012 12 ,  2012
    Multiple

    Free

  • TD or not TD: Analyzing the Role of Temporal Differencing in Deep Reinforcement Learning

    Thomas Brox, Vladlen Koltun, Alexey Dosovitskiy, Artemij Amiranashvili , ICLR 2018 1 ,  2018
    Python

    Free

  • An Optimal Control Approach to Deep Learning and Applications to Discrete-Weight Neural Networks

    Shuji Hao, Qianxiao Li , ICML 2018 7 ,  2018
    Multiple

    Free

  • Neural Network Language Modeling with Letter-based Features and Importance Sampling

    Hainan Xu, Daniel Povey, Sanjeev Khudanpur, Shiyin Kang, Yiming Wang, Jian Wang, Ke Li, Xie Chen , ICASSP 2018 4 ,  2018
    Shell

    Free

  • Multi-Task Bayesian Optimization

    Ryan P. Adams, Jasper Snoek, Kevin Swersky , NeurIPS 2013 12 ,  2013
    Python

    Free

  • Thermostat-assisted continuously-tempered Hamiltonian Monte Carlo for Bayesian learning

    Zhanxing Zhu, Jianhong Wang, Yaodong Yang, Rui Luo, Jun Wang , NeurIPS 2018 12 ,  2017
    Python

    Free

  • Classical Structured Prediction Losses for Sequence to Sequence Learning

    Myle Ott, Michael Auli, Sergey Edunov, David Grangier, Marc'Aurelio Ranzato , NAACL 2018 6 ,  2017
    Python

    Free

  • Batch Bayesian Optimization via Multi-objective Acquisition Ensemble for Automated Analog Circuit Design

    Dian Zhou, Xuan Zeng, Wenlong Lyu, Changhao Yan, Fan Yang , ICML 2018 7 ,  2018
    C++

    Free

  • Baseline Needs More Love: On Simple Word-Embedding-Based Models and Associated Pooling Mechanisms

    Yizhe Zhang, Ricardo Henao, Wenlin Wang, Lawrence Carin, Dinghan Shen, Guoyin Wang, Chunyuan Li, Qinliang Su, Martin Renqiang Min , ACL 2018 7 ,  2018
    Multiple

    Free

  • Analogical Reasoning on Chinese Morphological and Semantic Relations

    Wensi Li, Renfen Hu, Zhe Zhao, Shen Li, Xiaoyong Du, Tao Liu , ACL 2018 7 ,  2018
    Multiple

    Free

  • Dense Relational Captioning: Triple-Stream Networks for Relationship-Based Captioning

    Jinsoo Choi, Tae-Hyun Oh, Dong-Jin Kim, In So Kweon , CVPR 2019 6 ,  2019
    Lua

    Free

  • Found Graph Data and Planted Vertex Covers

    Jon Kleinberg, Austin R. Benson , NeurIPS 2018 12 ,  2018
    Julia

    Free

  • Dance Dance Convolution

    Zachary C. Lipton, Chris Donahue, Julian McAuley , ICML 2017 8 ,  2017
    Python

    Free

  • Iterative Projection and Matching: Finding Structure-preserving Representatives and Its Application to Computer Vision

    Mohsen Joneidi, Nazanin Rahnavard, Mubarak Shah, Alireza Zaeemzadeh , CVPR 2019 6 ,  2018
    Python

    Free

  • AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks

    Pengchuan Zhang, Tao Xu, Han Zhang, Xiaodong He, Qiuyuan Huang, Xiaolei Huang, Zhe Gan , CVPR 2018 6 ,  2017
    Multiple

    Free

  • Purely sequence-trained neural networks for ASR based on lattice-free MMI

    Daniel Povey, Daniel Galvez, Pegah Ghahrmani, Sanjeev Khudanpur, Xingyu Na, Yiming Wang, Vijayaditya Peddinti, Vimal Manohar , INTERSPEECH 2016 2016 9 ,  2016
    Shell

    Free

  • Banach Wasserstein GAN

    Jonas Adler, Sebastian Lunz , NeurIPS 2018 12 ,  2018
    Multiple

    Free

  • Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering

    Peter Anderson, Chris Buehler, Mark Johnson, Stephen Gould, Xiaodong He, Lei Zhang, Damien Teney , CVPR 2018 6 ,  2017
    Multiple

    Free

  • FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis

    Jakob Verbeek, Edmond Boyer, Nitika Verma , CVPR 2018 6 ,  2017
    Python

    Free

  • Deep Reinforcement Learning for Dialogue Generation

    Jianfeng Gao, Alan Ritter, Dan Jurafsky, Michel Galley, Will Monroe, Jiwei Li , EMNLP 2016 11 ,  2016
    Multiple

    Free

  • Deep High-Resolution Representation Learning for Human Pose Estimation

    Bin Xiao, Jingdong Wang, Ke Sun, Dong Liu , CVPR 2019 6 ,  2019
    Multiple

    Free

  • Emergent Complexity via Multi-Agent Competition

    Szymon Sidor, Jakub Pachocki, Ilya Sutskever, Trapit Bansal, Igor Mordatch , ICLR 2018 1 ,  2017
    Multiple

    Free

  • Towards Fast Computation of Certified Robustness for ReLU Networks

    Hongge Chen, Zhao Song, Huan Zhang, Cho-Jui Hsieh, Luca Daniel, Inderjit S. Dhillon, Tsui-Wei Weng, Duane Boning , ICML 2018 7 ,  2018
    Multiple

    Free

  • The Weighted Kendall and High-order Kernels for Permutations

    Jean-Philippe Vert, Yunlong Jiao , ICML 2018 7 ,  2018
    Multiple

    Free

  • Holistically-Nested Edge Detection

    Zhuowen Tu, Saining Xie , ICCV 2015 12 ,  2015
    Multiple

    Free

  • Relational Neural Expectation Maximization: Unsupervised Discovery of Objects and their Interactions

    Sjoerd van Steenkiste, Michael Chang, Klaus Greff, Jürgen Schmidhuber , ICLR 2018 1 ,  2018
    Python

    Free

  • NL2Bash: A Corpus and Semantic Parser for Natural Language Interface to the Linux Operating System

    Xi Victoria Lin, Michael D. Ernst, Chenglong Wang, Luke Zettlemoyer , LREC 2018 5 ,  2018
    Multiple

    Free

  • Self-ensembling for visual domain adaptation

    Geoffrey French, Mark Fisher, Michal Mackiewicz , ICLR 2018 1 ,  2017
    Multiple

    Free

  • Image-to-Markup Generation with Coarse-to-Fine Attention

    Jeffrey Ling, Yuntian Deng, Anssi Kanervisto, Alexander M. Rush , ICML 2017 8 ,  2016
    Multiple

    Free

  • Grounded Textual Entailment

    Alberto Testoni, Marc Tanti, Hoa Trong Vu, Aliia Erofeeva, Somayeh Jafaritazehjan, Claudio Greco, Guido Linders, Albert Gatt, Raffaella Bernardi , COLING 2018 8 ,  2018
    Python

    Free

  • A Dataset for Building Code-Mixed Goal Oriented Conversation Systems

    Siddhartha Arora, Nikita Moghe, Suman Banerjee, Mitesh M. Khapra , COLING 2018 8 ,  2018
    Python

    Free

  • Compact Bilinear Pooling

    Ning Zhang, Yang Gao, Oscar Beijbom, Trevor Darrell , CVPR 2016 6 ,  2015
    Multiple

    Free

  • Masking: A New Perspective of Noisy Supervision

    Jiangchao Yao, Gang Niu, Ivor Tsang, Ya Zhang, Bo Han, Masashi Sugiyama, Mingyuan Zhou , NeurIPS 2018 12 ,  2018
    Multiple

    Free

  • Breaking the Curse of Horizon: Infinite-Horizon Off-Policy Estimation

    Qiang Liu, Ziyang Tang, Dengyong Zhou, Lihong Li , NeurIPS 2018 12 ,  2018
    Python

    Free

  • XLNet: Generalized Autoregressive Pretraining for Language Understanding

    Zihang Dai, Zhilin Yang, Ruslan Salakhutdinov, Yiming Yang, Quoc V. Le, Jaime Carbonell , NeurIPS 2019 12 ,  2019
    Multiple

    Free

  • Adversarial Discriminative Domain Adaptation

    Trevor Darrell, Eric Tzeng, Judy Hoffman, Kate Saenko , CVPR 2017 7 ,  2017
    Multiple

    Free

  • Neural Message Passing for Quantum Chemistry

    George E. Dahl, Justin Gilmer, Patrick F. Riley, Oriol Vinyals, Samuel S. Schoenholz , ICML 2017 8 ,  2017
    Multiple

    Free

  • PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

    Kaichun Mo, Hao Su, Leonidas J. Guibas, Charles R. Qi , CVPR 2017 7 ,  2016
    Multiple

    Free

  • Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

    Jian Sun, Ross Girshick, Kaiming He, Shaoqing Ren , NeurIPS 2015 12 ,  2015
    Multiple

    Free

  • Focal Loss for Dense Object Detection

    Priya Goyal, Ross Girshick, Tsung-Yi Lin, Piotr Dollár, Kaiming He , ICCV 2017 10 ,  2017
    Multiple

    Free

  • From Patches to Images: A Nonparametric Generative Model

    Erik B. Sudderth, Michael C. Hughes, Geng Ji , ICML 2017 8 ,  2017
    Python

    Free

  • YOLO9000: Better, Faster, Stronger

    Ali Farhadi, Joseph Redmon , CVPR 2017 7 ,  2016
    Multiple

    Free

  • Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network

    Daniel Rueckert, Andrew P. Aitken, Wenzhe Shi, Zehan Wang, Johannes Totz, Rob Bishop, Ferenc Huszár, Jose Caballero , CVPR 2016 6 ,  2016
    Multiple

    Free

  • Parallel Streaming Wasserstein Barycenters

    Justin Solomon, Stefanie Jegelka, Matthew Staib, Sebastian Claici , NeurIPS 2017 12 ,  2017
    C++

    Free

  • Evaluation of Croatian Word Embeddings

    Slobodan Beliga, Lukas Svoboda , LREC 2018 5 ,  2017
    TeX

    Free

  • Task-based End-to-end Model Learning in Stochastic Optimization

    Priya L. Donti, J. Zico Kolter, Brandon Amos , NeurIPS 2017 12 ,  2017
    Python

    Free

  • Does Higher Order LSTM Have Better Accuracy for Segmenting and Labeling Sequence Data?

    Shuming Ma, Xuancheng Ren, Yang Yang, Xu Sun, Yi Zhang , COLING 2018 8 ,  2017
    Python

    Free

  • SQLNet: Generating Structured Queries From Natural Language Without Reinforcement Learning

    Chang Liu, Dawn Song, Xiaojun Xu , ICLR 2018 1 ,  2017
    Multiple

    Free

  • FaceNet: A Unified Embedding for Face Recognition and Clustering

    Dmitry Kalenichenko, James Philbin, Florian Schroff , CVPR 2015 6 ,  2015
    Multiple

    Free

  • Noise-Aware Unsupervised Deep Lidar-Stereo Fusion

    Pan Ji, Yiran Zhong, Yuchao Dao, Hongdong Li, Xuelian Cheng , CVPR 2019 6 ,  2019
    Multiple

    Free

  • Towards a Seamless Integration of Word Senses into Downstream NLP Applications

    Nigel Collier, Roberto Navigli, Jose Camacho-Collados, Mohammad Taher Pilehvar , ACL 2017 7 ,  2017
    Python

    Free

  • GamePad: A Learning Environment for Theorem Proving

    Ilya Sutskever, Daniel Huang, Dawn Song, Prafulla Dhariwal , ICLR 2019 5 ,  2018
    Coq

    Free

  • Mask R-CNN

    Piotr Dollár, Georgia Gkioxari, Ross Girshick, Kaiming He , ICCV 2017 10 ,  2017
    Multiple

    Free

  • Satirical News Detection and Analysis using Attention Mechanism and Linguistic Features

    Arjun Mukherjee, Fan Yang, Eduard Dragut , EMNLP 2017 9 ,  2017
    Python

    Free

  • Seernet at EmoInt-2017: Tweet Emotion Intensity Estimator

    Sushant Hiray, Venkatesh Duppada , WS 2017 9 ,  2017
    Jupyter Notebook

    Free

  • NTUA-SLP at SemEval-2018 Task 2: Predicting Emojis using RNNs with Context-aware Attention

    Alexandros Potamianos, Nikos Athanasiou, Athanasia Kolovou, Georgios Paraskevopoulos, Christos Baziotis, Nikolaos Ellinas , SEMEVAL 2018 6 ,  2018
    Python

    Free

  • Improved Techniques for Training GANs

    Vicki Cheung, Wojciech Zaremba, Xi Chen, Ian Goodfellow, Alec Radford, Tim Salimans , NeurIPS 2016 12 ,  2016
    Multiple

    Free

  • HashNet: Deep Learning to Hash by Continuation

    Zhangjie Cao, Mingsheng Long, Jianmin Wang, Philip S. Yu , ICCV 2017 10 ,  2017
    Jupyter Notebook

    Free

  • When Unsupervised Domain Adaptation Meets Tensor Representations

    Zhiguo Cao, Anton van den Hengel, Hao Lu, Wei Wei, Lei Zhang, Ke Xian, Chunhua Shen , ICCV 2017 10 ,  2017
    Matlab

    Free

  • Bayesian Optimization for Probabilistic Programs

    Tuan Anh Le, Michael A. Osborne, Jan-Willem van de Meent, Frank Wood, Tom Rainforth , NeurIPS 2016 12 ,  2017
    Multiple

    Free

  • Relaxed Quantization for Discretized Neural Networks

    Christos Louizos, Max Welling, Efstratios Gavves, Tijmen Blankevoort, Matthias Reisser , ICLR 2019 5 ,  2018
    Shell

    Free

  • RACE: Large-scale ReAding Comprehension Dataset From Examinations

    Guokun Lai, Yiming Yang, Eduard Hovy, Hanxiao Liu, Qizhe Xie , EMNLP 2017 9 ,  2017
    Multiple

    Free

  • Context encoders as a simple but powerful extension of word2vec

    Franziska Horn , WS 2017 8 ,  2017
    Python

    Free

  • Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm

    Anders Søgaard, Iyad Rahwan, Bjarke Felbo, Alan Mislove, Sune Lehmann , EMNLP 2017 9 ,  2017
    Multiple

    Free

  • Mapping Natural Language Commands to Web Elements

    Panupong Pasupat, Tian-Shun Jiang, Kelvin Guu, Evan Zheran Liu, Percy Liang , EMNLP 2018 10 ,  2018
    Python

    Free

  • Towards a quality metric for dense light fields

    Vamsi Kiran Adhikarla, Rafał K. Mantiuk, Piotr Didyk, Karol Myszkowski, Denis Sumin, Marek Vinkler, Hans-Peter Seidel , CVPR 2017 7 ,  2017
    MATLAB

    Free

  • Mind the Class Weight Bias: Weighted Maximum Mean Discrepancy for Unsupervised Domain Adaptation

    Wangmeng Zuo, Peihua Li, Hongliang Yan, Yukang Ding, Yong Xu, Qilong Wang , CVPR 2017 7 ,  2017
    C++

    Free

‹1234›»
bottom logo
  • Contact Us
  • Register
© All copyrights @Science Nest - 2020

Terms of use and Privacy Policy