• Find code on Google Scholar, Semantic Scholar, Microsoft Academic, ArXiv using our Browser Extension!

    Add to Chrome
top logo
  • 0 itemsFree
  • Categories
    • Agricultural and Biological Sciences
      • Agricultural Sciences
    • Arts and Humanities
    • Biochemistry
    • Business and Management
    • Chemistry
      • Analytical Chemistry
    • Computer Science
      • Artificial Intelligence
    • Decision Sciences
    • Earth and Environmental Sciences
    • Economics and Econometrics
      • Econometrics
      • Experimental Economics
      • Finance
    • Energy
    • Engineering
      • Aerospace Engineering
      • Electrical and Computer Engineering
    • Health Professions
    • Immunology and Microbiology
    • Materials Science
    • Mathematics
      • Mathematical Sciences
    • Medicine
    • Neuroscience
    • Nursing
    • Pharmacology
      • Toxicology and Pharmaceutics
    • Physics and Astronomy
      • Physics
    • Psychology
    • Social Sciences
    • Veterinary
  • Researchers
  • About us
  • Register
  • Login
  • FAQ
Science NestCategoriesComputer Science
Filter:
Price Price
Title Title
Date Date
  • When Does Label Smoothing Help?

    Simon Kornblith, Rafael Müller, Geoffrey Hinton , NeurIPS 2019 12 ,  2019
    Python

    Free

  • When Deep Learning Met Code Search

    Koushik Sen, Jose Cambronero, Seohyun Kim, Satish Chandra, Hongyu Li , ESEC/FSE 2019 - Proceedings of the 2019 27th ACM Joint Meeting European Software Engineering Conference and Symposium on the Foundations of Software Engineering ,  2019
    Jupyter Notebook

    Free

  • When Deep Learning Meets Digital Image Correlation

    K. Abdelouahab, B. Blaysat, M. Grediac, F. Berry, S. Boukhtache, F. Sur , Optics and Lasers in Engineering ,  2020
    Python

    Free

  • When Color Constancy Goes Wrong: Correcting Improperly White-Balanced Images

    Brian Price, Mahmoud Afifi, Michael S. Brown, Scott Cohen , CVPR 2019 6 ,  2019
    MATLAB

    Free

  • When Causal Intervention Meets Adversarial Examples and Image Masking for Deep Neural Networks

    Yi-Chang James Tsai, Chao-Han Huck Yang, Pin-Yu Chen, Yi-Chieh Liu, Xiaoli Ma , Proceedings - International Conference on Image Processing, ICIP ,  2019
    Jupyter Notebook

    Free

  • When and Why are Pre-trained Word Embeddings Useful for Neural Machine Translation?

    Graham Neubig, Ye Qi, Sarguna Janani Padmanabhan, Devendra Singh Sachan, Matthieu Felix , NAACL 2018 6 ,  2018
    Python

    Free

  • What’s There in the Dark

    Saptakatha Adak, Sauradip Nag, Sukhendu Das , 26th IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan 2019 9 ,  2019
    Python

    Free

  • What’s Missing: A Knowledge Gap Guided Approach for Multi-hop Question Answering

    Ashish Sabharwal, Peter Clark, Tushar Khot , IJCNLP 2019 11 ,  2019
    Python

    Free

  • What’s in a Question: Using Visual Questions as a Form of Supervision

    Abhinav Gupta, Siddha Ganju, Olga Russakovsky , CVPR 2017 7 ,  2017
    Lua

    Free

  • What’s in a Domain? Learning Domain-Robust Text Representations using Adversarial Training

    Timothy Baldwin, Trevor Cohn, Yitong Li , NAACL 2018 6 ,  2018
    Python

    Free

  • What’s Hidden in a Randomly Weighted Neural Network?

    Mohammad Rastegari, Mitchell Wortsman, Vivek Ramanujan, Ali Farhadi, Aniruddha Kembhavi , CVPR 2020 6 ,  2019
    Python

    Free

  • What’s Cookin’? Interpreting Cooking Videos using Text, Speech and Vision

    Kevin Murphy, Jonathan Malmaud, Andrew Rabinovich, Nicholas Johnston, Jonathan Huang, Vivek Rathod , HLT 2015 5 ,  2015
    Unspecified

    Free

  • What's Cookin'? Interpreting Cooking Videos using Text, Speech and Vision

    Kevin Murphy, Jonathan Malmaud, Nick Johnston, Andrew Rabinovich, Jonathan Huang, Vivek Rathod , NAACL HLT 2015 - 2015 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies, Proceedings of the Conference ,  2015
    Unspecified

    Free

  • What Your Username Says About You

    Mari Ostendorf, Aaron Jaech , EMNLP 2015 9 ,  2015
    Python

    Free

  • What You Say and How You Say it: Joint Modeling of Topics and Discourse in Microblog Conversations

    Jing Li, Cuiyun Gao, Michael R. Lyu, Irwin King, Jichuan Zeng, Yulan He , TACL 2019 3 ,  2019
    Python

    Free

  • What Would You Expect? Anticipating Egocentric Actions with Rolling-Unrolling LSTMs and Modality Attention

    Giovanni Maria Farinella, Antonino Furnari , ICCV 2019 10 ,  2019
    Multiple

    Free

  • What value do explicit high level concepts have in vision to language problems?

    Anthony Dick, Anton van den Hengel, Qi Wu, Lingqiao Liu, Chunhua Shen , CVPR 2016 6 ,  2015
    Multiple

    Free

  • What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?

    Alex Kendall, Yarin Gal , NeurIPS 2017 12 ,  2017
    Multiple

    Free

  • What to talk about and how? Selective Generation using LSTMs with Coarse-to-Fine Alignment

    Mohit Bansal, Matthew R. Walter, Hongyuan Mei , NAACL 2016 6 ,  2015
    Python

    Free

  • What to Expect of Classifiers? Reasoning about Logistic Regression with Missing Features

    YooJung Choi, Yitao Liang, Pasha Khosravi, Guy Van den Broeck , IJCAI International Joint Conference on Artificial Intelligence ,  2019
    Jupyter Notebook

    Free

  • What they do when in doubt: a study of inductive biases in seq2seq learners

    Rahma Chaabouni, Eugene Kharitonov , arXiv preprint ,  2020
    Python

    Free

  • What the Constant Velocity Model Can Teach Us About Pedestrian Motion Prediction

    Vincent Aravantinos, Christoph Schöller, Florian Lay, Alois Knoll , IEEE Robotics and Automation Letters ,  2019
    Multiple

    Free

  • What Should I Learn First: Introducing LectureBank for NLP Education and Prerequisite Chain Learning

    Robert R. Tung, Dragomir R. Radev, Alexander R. Fabbri, Irene Li , arXiv preprint ,  2018
    Python

    Free

  • What Should I Learn First: Introducing LectureBank for NLP Education and Prerequisite Chain Learning

    Robert R. Tung, Dragomir R. Radev, Alexander R. Fabbri, Irene Li , 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 ,  2018
    Python

    Free

  • What Object Should I Use? – Task Driven Object Detection

    Yaser Souri, Juergen Gall, Johann Sawatzky, Christian Grund , CVPR 2019 6 ,  2019
    Python

    Free

  • What Matters in Unsupervised Optical Flow

    Rico Jonschkowski, Kurt Konolige, Anelia Angelova, Jonathan T. Barron, Ariel Gordon, Austin Stone , ECCV 2020 8 ,  2020
    CODE NOT FOUND

    Free

  • What Makes Training Multi-Modal Classification Networks Hard?

    Weiyao Wang, Du Tran, Matt Feiszli , CVPR 2020 6 ,  2019
    Multiple

    Free

  • What Makes Good Synthetic Training Data for Learning Disparity and Optical Flow Estimation?

    Thomas Brox, Eddy Ilg, Daniel Cremers, Nikolaus Mayer, Philipp Fischer, Caner Hazirbas, Alexey Dosovitskiy , International Journal of Computer Vision ,  2018
    C++

    Free

  • What Makes A Good Story? Designing Composite Rewards for Visual Storytelling

    Yu Cheng, Junjie Hu, Jianfeng Gao, Zhe Gan, Jingjing Liu, Graham Neubig , Proceedings of the AAAI Conference on Artificial Intelligence ,  2019
    Python

    Free

  • What made you do this? Understanding black-box decisions with sufficient input subsets

    Jonas Mueller, Siddhartha Jain, Brandon Carter, David Gifford , AISTATS 2019 - 22nd International Conference on Artificial Intelligence and Statistics ,  2018
    HTML

    Free

  • What Looks Good with my Sofa: Multimodal Search Engine for Interior Design

    Łukasz Brocki, Ivona Tautkute, Tomasz Trzciński, Wojciech Stokowiec, Aleksandra Możejko, Krzysztof Marasek , Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, FedCSIS 2017 ,  2017
    Jupyter Notebook

    Free

  • What it Thinks is Important is Important: Robustness Transfers through Input Gradients

    Alvin Chan, Yew-Soon Ong, Yi Tay , CVPR 2020 6 ,  2019
    Python

    Free

  • What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis

    Junyeop Lee, Hwalsuk Lee, Seong Joon Oh, Sangdoo Yun, Sungrae Park, Jeonghun Baek, Geewook Kim, Dongyoon Han , ICCV 2019 10 ,  2019
    Jupyter Notebook

    Free

  • What is the State of Neural Network Pruning?

    Jose Javier Gonzalez Ortiz, Davis Blalock, Jonathan Frankle, John Guttag , arXiv preprint ,  2020
    Python

    Free

  • What is the Role of Recurrent Neural Networks (RNNs) in an Image Caption Generator?

    Marc Tanti, Albert Gatt, Kenneth P. Camilleri , WS 2017 9 ,  2017
    Multiple

    Free

  • What is the Essence of a Claim? Cross-Domain Claim Identification

    Christian Stab, Iryna Gurevych, Johannes Daxenberger, Ivan Habernal, Steffen Eger , EMNLP 2017 9 ,  2017
    Java

    Free

  • What Is One Grain of Sand in the Desert? Analyzing Individual Neurons in Deep NLP Models

    Yonatan Belinkov, Nadir Durrani, Hassan Sajjad, Fahim Dalvi, Anthony Bau, James Glass , 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 ,  2018
    JavaScript

    Free

  • What is Normal, What is Strange, and What is Missing in a Knowledge Graph: Unified Characterization via Inductive Summarization

    Xinyi Zheng, Danai Koutra, Jilles Vreeken, Caleb Belth , Proceedings of The Web Conference 2020 ,  2020
    Python

    Free

  • What Else Can Fool Deep Learning? Addressing Color Constancy Errors on Deep Neural Network Performance

    Michael S Brown, Mahmoud Afifi , ICCV 2019 10 ,  2019
    MATLAB

    Free

  • What Does BERT Look At? An Analysis of BERT’s Attention

    Urvashi Khandelwal, Christopher D. Manning, Kevin Clark, Omer Levy , WS 2019 8 ,  2019
    Jupyter Notebook

    Free

  • What Does BERT Learn about the Structure of Language?

    Ganesh Jawahar, Djam{\'e} Seddah, Beno{\^\i}t Sagot , ACL 2019 7 ,  2019
    Python

    Free

  • What does BERT know about books, movies and music? Probing BERT for Conversational Recommendation

    Claudia Hauff, Gustavo Penha , Fourteenth ACM Conference on Recommender Systems ,  2020
    Python

    Free

  • What do you learn from context? Probing for sentence structure in contextualized word representations

    Adam Poliak, Benjamin Van Durme, Samuel R. Bowman, Patrick Xia, Najoung Kim, Alex Wang, R Thomas McCoy, Dipanjan Das, Ellie Pavlick, Ian Tenney, Berlin Chen , ICLR 2019 5 ,  2019
    Jupyter Notebook

    Free

  • What Do Single-view 3D Reconstruction Networks Learn?

    Stephan R. Richter, Thomas Brox, Maxim Tatarchenko, Zhuwen Li, Vladlen Koltun, René Ranftl , CVPR 2019 6 ,  2019
    Jupyter Notebook

    Free

  • What Deep CNNs Benefit from Global Covariance Pooling: An Optimization Perspective

    Li Zhang, Qinghua Hu, Banggu Wu, Peihua Li, Qilong Wang, Wangmeng Zuo, Dongwei Ren , CVPR 2020 6 ,  2020
    Python

    Free

  • What Can Neural Networks Reason About?

    Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken-ichi Kawarabayashi, Stefanie Jegelka , ICLR 2020 1 ,  2019
    Python

    Free

  • What BERT is not: Lessons from a new suite of psycholinguistic diagnostics for language models

    Allyson Ettinger , TACL 2020 1 ,  2019
    Python

    Free

  • What Are People Asking About COVID-19? A Question Classification Dataset

    Jason Wei, Chengyu Huang, Soroush Vosoughi, Jerry Wei , arXiv preprint ,  2020
    Python

    Free

  • What Actions are Needed for Understanding Human Actions in Videos?

    Abhinav Gupta, Gunnar A. Sigurdsson, Olga Russakovsky , ICCV 2017 10 ,  2017
    Python

    Free

  • WHAM!: Extending Speech Separation to Noisy Environments

    Gordon Wichern, Michael Flynn, Joe Antognini, Emmett McQuinn, Jonathan Le Roux, Dwight Crow, Licheng Richard Zhu, Ethan Manilow , Interspeech 2019 ,  2019
    Python

    Free

  • WGANSing

    Merlijn Blaauw, Pritish Chandna , Interspeech 2019 3 ,  2019
    Python

    Free

  • WESPE: Weakly Supervised Photo Enhancer for Digital Cameras

    Andrey Ignatov, Radu Timofte, Luc Van Gool, Nikolay Kobyshev, Kenneth Vanhoey , IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops ,  2017
    Multiple

    Free

  • WERd: Using Social Text Spelling Variants for Evaluating Dialectal Speech Recognition

    Peter Bell, Ahmed Ali, Steve Renals, Preslav Nakov , 2017 IEEE Automatic Speech Recognition and Understanding Workshop, ASRU 2017 - Proceedings ,  2017
    Unspecified

    Free

  • Well-Read Students Learn Better: On the Importance of Pre-training Compact Models

    Ming-Wei Chang, Kristina Toutanova, Kenton Lee, Iulia Turc , ICLR 2020 1 ,  2019
    Multiple

    Free

  • Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks

    Matthias Fey, Gaurav Rattan, Christopher Morris, Martin Grohe, William L. Hamilton, Jan Eric Lenssen, Martin Ritzert , 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 ,  2018
    Multiple

    Free

  • WeightNet: Revisiting the Design Space of Weight Networks

    Xiangyu Zhang, Jiawei Huang, Jian Sun, Ningning Ma , ECCV 2020 8 ,  2020
    Python

    Free

  • Weightless: Lossy Weight Encoding For Deep Neural Network Compression

    Gu-Yeon Wei, David Brooks, Robert Adolf, Brandon Reagen, Udit Gupta, Michael M. Mitzenmacher, Alexander M. Rush , ICML 2018 7 ,  2017
    Multiple

    Free

  • Weighted Transformer Network for Machine Translation

    Richard Socher, Nitish Shirish Keskar, Karim Ahmed , ICLR 2018 1 ,  2017
    Multiple

    Free

  • Weighted Speech Distortion Losses for Neural-Network-Based Real-Time Speech Enhancement

    Ross Cutler, Harishchandra Dubey, Sebastian Braun, Ivan Tashev, Chandan K. A. Reddy, Yangyang Xia , IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2020 2 ,  2020
    Unspecified

    Free

  • Weighted Spectral Embedding of Graphs

    Alexandre Hollocou, Thomas Bonald, Marc Lelarge , 2018 56th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2018 ,  2018
    Jupyter Notebook

    Free

  • Weighted Random Search for CNN Hyperparameter Optimization

    Razvan Andonie, Adrian-Catalin Florea , International Journal of Computers, Communications and Control ,  2020
    Go

    Free

  • Weighted Neural Bag-of-n-grams Model: New Baselines for Text Classification

    Bofang Li, Zhe Zhao, Puwei Wang, Xiaoyong Du, Tao Liu , COLING 2016 12 ,  2016
    C

    Free

  • Weighted Linear Bandits for Non-Stationary Environments

    Olivier Cappé, Claire Vernade, Yoan Russac , NeurIPS 2019 12 ,  2019
    Jupyter Notebook

    Free

  • Weighted Fisher Discriminant Analysis in the Input and Feature Spaces

    Mark Crowley, Fakhri Karray, Milad Sikaroudi, Benyamin Ghojogh, H. R. Tizhoosh , Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) ,  2020
    Python

    Free

  • Weight Uncertainty in Neural Networks

    Julien Cornebise, Charles Blundell, Daan Wierstra, Koray Kavukcuoglu , 32nd International Conference on Machine Learning, ICML 2015 ,  2015
    Multiple

    Free

  • Weight Pruning via Adaptive Sparsity Loss

    Georgios Goumas, George Retsinas, Petros Maragos, Athena Elafrou , arXiv preprint ,  2020
    Python

    Free

  • Weight Poisoning Attacks on Pre-trained Models

    Keita Kurita, Graham Neubig, Paul Michel , arXiv preprint ,  2020
    Jupyter Notebook

    Free

  • Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks

    Diederik P. Kingma, Tim Salimans , NeurIPS 2016 12 ,  2016
    Multiple

    Free

  • Weight Agnostic Neural Networks

    Adam Gaier, David Ha , NeurIPS 2019 12 ,  2019
    Multiple

    Free

  • weedNet: Dense Semantic Weed Classification Using Multispectral Images and MAV for Smart Farming

    Frank Liebisch, Roland Siegwart, Zetao Chen, Juan Nieto, Marija Popovic, Raghav Khanna, Inkyu Sa , IEEE Robotics and Automation Letters ,  2017
    Matlab

    Free

  • Web-Scale Image Clustering Revisited

    Ioannis Z. Emiris, Yannis Kalantidis, Evangelos Anagnostopoulos, Yannis Avrithis , ICCV 2015 12 ,  2015
    C++

    Free

  • Web-based visualisation of head pose and facial expressions changes: monitoring human activity using depth data

    Grigorios Kalliatakis, Nikolaos Vidakis, Georgios Triantafyllidis , 2016 8th Computer Science and Electronic Engineering Conference, CEEC 2016 - Conference Proceedings ,  2017
    JavaScript

    Free

  • Web-based Argumentation

    Kenrick , Computers and Education ,  2016
    Python

    Free

  • Web Image Annotation via Subspace-Sparsity Collaborated Feature Selection

    Zhigang Ma, Feiping Nie, Yi Yang, Jasper Uijlings, Nicu Sebe , IEEE Transactions on Multimedia ,  2012
    MATLAB

    Free

  • Web & Personal Image Annotation by Mining Label Correlation with Relaxed Visual Graph Embedding

    Yi Yang, Fei Wu, Feiping Nie, Heng Tao Shen, Yueting Zhuang, Alexander G. Hauptmann , IEEE Transactions on Image Processing ,  2012
    MATLAB

    Free

  • Weakly-supervised Visual Instrument-playing Action Detection in Videos

    Shyh-Kang Jeng, Jen-Yu Liu, Yi-Hsuan Yang , IEEE Transactions on Multimedia ,  2018
    Python

    Free

  • Weakly-Supervised Semantic Segmentation via Sub-category Exploration

    Ming-Hsuan Yang, Qiaosong Wang, Wei-Chih Hung, Yi-Hsuan Tsai, Robinson Piramuthu, Yu-Ting Chang , CVPR 2020 6 ,  2020
    Python

    Free

  • Weakly-Supervised Semantic Segmentation Network With Deep Seeded Region Growing

    Zilong Huang, Xinggang Wang, Jingdong Wang, Wenyu Liu, Jiasi Wang , CVPR 2018 6 ,  2018
    Python

    Free

  • Weakly-Supervised Salient Object Detection via Scribble Annotations

    Xin Yu, Jing Zhang, Yuchao Dai, Bowen Liu, Aixuan Li, Peipei Song , CVPR 2020 6 ,  2020
    Python

    Free

  • Weakly-Supervised Neural Text Classification

    Yu Meng, Chao Zhang, Jiaming Shen, Jiawei Han , International Conference on Information and Knowledge Management, Proceedings ,  2018
    Python

    Free

  • Weakly-Supervised Learning for Tool Localization in Laparoscopic Videos

    Nicolas Padoy, Jacques Marescaux, Didier Mutter, Armine Vardazaryan , Intravascular Imaging and Computer Assisted Stenting and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis ,  2018
    Jupyter Notebook

    Free

  • Weakly-Supervised Disentanglement Without Compromises

    Ben Poole, Michael Tschannen, Bernhard Schölkopf, Gunnar Rätsch, Olivier Bachem, Francesco Locatello , ICML 2020 1 ,  2020
    Multiple

    Free

  • Weakly-Supervised Cell Tracking via Backward-and-Forward Propagation

    Chenyang Wang, Kazuya Nishimura, Dai Fei Elmer Ker, Ryoma Bise, Junya Hayashida , ECCV 2020 8 ,  2020
    Python

    Free

  • Weakly-supervised Caricature Face Parsing through Domain Adaptation

    Wenqing Chu, Ming-Hsuan Yang, Wei-Chih Hung, Yi-Hsuan Tsai, Deng Cai , Proceedings - International Conference on Image Processing, ICIP ,  2019
    Python

    Free

  • Weakly-Supervised Action Segmentation with Iterative Soft Boundary Assignment

    Li Ding, Chenliang Xu , CVPR 2018 6 ,  2018
    Python

    Free

  • Weakly-Supervised Action Localization by Generative Attention Modeling

    Baifeng Shi, Qi Dai, Yadong Mu, Jingdong Wang , CVPR 2020 6 ,  2020
    Python

    Free

  • Weakly- and Semi-Supervised Panoptic Segmentation

    Philip H. S. Torr, Anurag Arnab, Qizhu Li , ECCV 2018 9 ,  2018
    Matlab

    Free

  • Weakly Supervised Visual Semantic Parsing

    Shih-Fu Chang, Alireza Zareian, Svebor Karaman , CVPR 2020 6 ,  2020
    Jupyter Notebook

    Free

  • Weakly Supervised Temporal Action Localization Using Deep Metric Learning

    Richard J. Radke, Ashraful Islam , Proceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020 ,  2020
    Python

    Free

  • Weakly Supervised Silhouette-based Semantic Scene Change Detection

    Ken Sakurada, Weimin Wang, Mikiya Shibuya , 2020 IEEE International Conference on Robotics and Automation (ICRA) ,  2018
    Python

    Free

  • Weakly Supervised Semantic Point Cloud Segmentation: Towards 10x Fewer Labels

    Xun Xu, Gim Hee Lee , CVPR 2020 6 ,  2020
    Python

    Free

  • Weakly Supervised PatchNets: Describing and Aggregating Local Patches for Scene Recognition

    Limin Wang, Bowen Zhang, Zhe Wang, Yali Wang, Yu Qiao , IEEE Transactions on Image Processing ,  2016
    Matlab

    Free

  • Weakly Supervised Object Detection in Artworks

    Said Ladjal, Olivier Bonfait, Nicolas Gonthier, Yann Gousseau , ECCV 2018 Workshop Computer Vision for Art Analysis - VISART 2018 2018 10 ,  2018
    Python

    Free

  • Weakly supervised multiple instance learning histopathological tumor segmentation

    Julien Adam, Théo Estienne, Maria Vakalopoulou, Nikos Paragios, Théophraste Henry, Marion Classe, Eric Deutsch, Enzo Battistella, Marvin Lerousseau, Alexandre Carré , Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) ,  2020
    Python

    Free

  • Weakly Supervised Localisation for Fetal Ultrasound Images

    Alberto Gomez, Bishesh Khanal, Jacqueline Matthew, Julia A. Schnabel, Nicolas Toussaint, Matthew Sinclair, Emily Skelton , Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) ,  2018
    Multiple

    Free

  • Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations

    Suha Kwak, Jiwoon Ahn, Sunghyun Cho , CVPR 2019 6 ,  2019
    Python

    Free

  • Weakly Supervised Instance Segmentation using the Bounding Box Tightness Prior

    Cheng-Chun Hsu, Yen-Yu Lin, Kuang-Jui Hsu, Yung-Yu Chuang, Chung-Chi Tsai , NeurIPS 2019 12 ,  2019
    Python

    Free

  • Weakly Supervised Instance Segmentation using Class Peak Response

    Jianbin Jiao, Yi Zhu, Qixiang Ye, Yanzhao Zhou, Qiang Qiu , CVPR 2018 6 ,  2018
    Multiple

    Free

  • Weakly Supervised Generative Network for Multiple 3D Human Pose Hypotheses

    Chen Li, Gim Hee Lee , arXiv preprint ,  2020
    Unspecified

    Free

  • Weakly Supervised Energy-Based Learning for Action Segmentation

    Peng Lei, Jun Li, Sinisa Todorovic , ICCV 2019 10 ,  2019
    Python

    Free

‹12345›»
bottom logo
  • Contact Us
  • Register
© All copyrights @Science Nest - 2020

Terms of use and Privacy Policy