Causal Structure Learning

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Christina HeinzeDeml, Marloes H. Maathuis, Nicolai Meinshausen
Journal/Conference Name ARXIV: METHODOLOGY
Paper Category
Paper Abstract Graphical models can represent a multivariate distribution in a convenient and accessible form as a graph. Causal models can be viewed as a special class of graphical models that represent not only the distribution of the observed system but also the distributions under external interventions. They hence enable predictions under hypothetical interventions, which is important for decision making. The challenging task of learning causal models from data always relies on some underlying assumptions. We discuss several recently proposed structure learning algorithms and their assumptions, and we compare their empirical performance under various scenarios.
Date of publication 2017
Code Programming Language R
Comment

Copyright Researcher 2021