Centralized Sparse Representation for Image Restoration
View Researcher's Other CodesMATLAB code for the paper: “Centralized Sparse Representation for Image Restoration”.
Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).
Please contact us in case of a broken link from here
Authors | Weisheng Dong, Lei Zhang, and Guangming Shi |
Journal/Conference Name | 2011 International Conference on Computer Vision (ICCV 2011) |
Paper Category | Image Processing and Computer Vision |
Paper Abstract | This paper proposes a novel sparse representation model called centralized sparse representation (CSR) for image restoration tasks. In order for faithful image reconstruction, it is expected that the sparse coding coefficients of the degraded image should be as close as possible to those of the unknown original image with the given dictionary. However, since the available data are the degraded (noisy, blurred and/or down-sampled) versions of the original image, the sparse coding coefficients are often not accurate enough if only the local sparsity of the image is considered, as in many existing sparse representation models. To make the sparse coding more accurate, a centralized sparsity constraint is introduced by exploiting the nonlocal image statistics. The local sparsity and the nonlocal sparsity constraints are unified into a variational framework for optimization. Extensive experiments on image restoration validated that our CSR model achieves convincing improvement over previous state-of-the-art methods. |
Date of publication | 2011 |
Code Programming Language | MATLAB |
Comment |